
MATLAB® Coder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ Release Notes
© COPYRIGHT 2011–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2023a

MATLAB Programming for Code Generation . 1-2

Name-Value Argument Validation: Generate code for arguments blocks in
MATLAB functions . 1-2

Output Argument Validation: Generate code for arguments(Output) blocks
in MATLAB functions . 1-2

Input Argument Validation: Use any name for repeating input arguments
. 1-2

Generate code for growing arrays with (end + 1) indexing 1-3
Generate code for uint32 enumerations . 1-3
coder.read and coder.write: Read data from .coderdata file into your

deployed application . 1-3
Dynamic memory allocation for fixed-size arrays . 1-4

Supported Functions . 1-6

Code generation for more MATLAB functions . 1-6
Code generation for more toolbox functions . 1-6

Generated Code Improvements . 1-8

Generate C++11 code that passes variables by reference 1-8
Improved quality of code generated for logical indexing operations 1-8
Improved loop fusion for vectorized operations that use variable-size arrays

. 1-9
Removed redundant operations that use identical values 1-9

Code Generation Workflow . 1-11

Generate generic CMakeLists.txt file when you generate source code only
. 1-11

Improved Error Recovery: Code generation produces fewer unhelpful
cascading errors . 1-11

Functionality being removed or changed . 1-11

Performance . 1-12

Generate standalone code that uses built-in FFTW library 1-12
Loop Optimization: Use coder.loop.Control objects to improve for loop

performance in generated code . 1-12
Generate SIMD instructions in MEX code . 1-13
Functionality being removed or changed . 1-13

Deep Learning with MATLAB Coder . 1-15

v

Contents

Generate code for variable-size dlarray data type 1-15
Generate code for dlnetwork objects that accept variable sequence length

inputs . 1-15
Generate code for channel-wise convolution layer 1-16
Generate code for Pooling layers with mean padding 1-16
Generate code that takes advantage of learnables compression in bfloat16

format . 1-16
Deep learning configuration object name change 1-16
Quantized TensorFlow Lite Models: Configure predict function to accept

and return fp32 values . 1-16
Use newer version of TensorFlow Lite library in simulation and code

generation . 1-17
Improved performance of generated generic C/C++ code 1-17

Check bug reports for issues and fixes . 1-18

R2022b

MATLAB Programming for Code Generation . 2-2

Input Argument Validation: Generate code for arguments blocks in MATLAB
functions . 2-2

More MATLAB functions declared as auto-extrinsic 2-2

Supported Functions . 2-3

Code generation for more MATLAB functions . 2-3
Code generation for more toolbox functions . 2-3

Code Generation Workflow . 2-4

Improved representation for string type objects . 2-4
Specify code generation target language by using coder.target 2-4
Build generated code with CMake . 2-5
Creation of custom CMake toolchain definitions . 2-5

Performance . 2-7

Improved cache efficiency of generated code containing loop distribution,
interchange, and reversal . 2-7

Improved performance of generated MEX files . 2-8
SIMD code for bitwise and shift operations . 2-8

Deep Learning with MATLAB Coder . 2-10

Deep Learning: Analyze and find issues in the network for code generation
. 2-10

TensorFlow Lite: Generate C++ code for pretrained models and deploy on
Windows platforms . 2-10

Generate code for dlnetwork objects that do not have input layers 2-10
Deep Learning Arrays: Generate code for more functions that use dlarray

. 2-10

vi Contents

Deep Learning Networks: Generate code for additional networks 2-11
Deep Learning: Generate code for additional layers 2-11
Improved performance of generated generic C/C++ code 2-12
Functionality being removed or changed . 2-12

Check bug reports for issues and fixes . 2-13

R2022a

Supported Functions . 3-2

Code generation for more MATLAB functions . 3-2
Code generation for more toolbox functions . 3-2

Generated Code Improvements . 3-3

Generate C++11 enumeration classes for MATLAB enumerations 3-3
Improvement to generated C++ code that uses externally specified

enumerations . 3-4
Additional improvements to generated C++11 code 3-4

Code Generation Workflow . 3-6

New Code Generation Readiness Tool: View more information and navigate
through readiness results more easily . 3-6

coder.ScreenerInfo object: Access code generation readiness information
programmatically . 3-7

MATLAB Coder Interface for Visual Studio Code Debugging 3-7
Generated MEX: UTF-8 system encoding on Windows platform 3-7

Performance . 3-9

SIMD code for reduction operations . 3-9
Parallelization of for-loops performing reduction operations 3-9
Minimized variable scope for C99 (ISO) code generation 3-10

Deep Learning with MATLAB Coder . 3-11

TensorFlow Lite: Generate C++ code for pretrained models and deploy on
Linux platforms . 3-11

CMSIS-NN Library: Generate code for quantized deep learning layers and
deploy on ARM Cortex-M targets . 3-11

Generate generic C/C++ code for dlnetwork workflows 3-11
Code generation from MATLAB for dlnetwork objects that contain image

sequences . 3-12
Deep Learning Arrays: Generate code for more functions that use dlarray

. 3-12
Generate C++ code that performs inference computations in 8-bit integers

for more layers . 3-12
Deep Learning Networks: Generate code for additional networks 3-12
Deep Learning: Generate code for additional layers 3-13
Improved performance of generated generic C/C++ code 3-14

vii

Check bug reports for issues and fixes . 3-15

R2021b

MATLAB Programming for Code Generation . 4-2

Implicit Expansion: Generate code for element-wise operations and
functions with automatic expansion of operand dimensions 4-2

Generate code for MATLAB code that uses class aliases 4-3
Access name of currently running MATLAB function during debugging by

using coder.mfunctionname . 4-3
Functionality being removed or changed . 4-3

Supported Functions . 4-4

Expanded code generation for tables and timetables 4-4
Code generation for more MATLAB functions . 4-4
Code generation for more toolbox functions . 4-4

Generated Code Improvements . 4-5

Generate C++11 enumerations that specify underlying type 4-5

Code Generation Workflow . 4-6

Specify custom hardware targets during code generation 4-6

Performance . 4-7

SIMD code generation for Intel hardware . 4-7
C Code Generation: Generate portable C code that has improved

performance for five functions . 4-7
Generate optimized code by unrolling parallel for loops 4-7
Eliminated dead code lines containing variable indices 4-7
Improved execution speed through common subexpression elimination . . 4-8
Generation of vectorized MEX code in JIT compilation mode 4-9
Optimized dynamic array access . 4-9
Specify threads to parallelize for and parfor-loops 4-10

Deep Learning with MATLAB Coder . 4-11

Deep Learning Workflow: Update network parameters after code generation
. 4-11

Deep Learning Arrays: Generate code for more functions that use dlarray
. 4-11

Custom Layers: Use dlarray in deep learning networks that have custom
layers . 4-11

Code generation from MATLAB for dlnetwork that contains sequences . . 4-12
Generate generic C/C++ code for more deep learning layers 4-12
Deploy generic C/C++ code on ARM Cortex-M processors 4-12
Generate C++ code that performs inference computations in 8-bit integers

for more layers . 4-13

viii Contents

Generate C++ code that uses third-party libraries for more deep learning
layers . 4-13

Functionality being removed or changed . 4-14

Check bug reports for issues and fixes . 4-15

R2021a

MATLAB Programming for Code Generation . 5-2

Generate code for inherited constructors . 5-2
Generate code for name=value syntax for passing name-value arguments

. 5-2
Generate code for property information functions isprop and properties

. 5-2

Supported Functions . 5-3

Expanded code generation for categorical arrays 5-3
Expanded code generation for tables and timetables 5-3
Code generation for more MATLAB functions . 5-4
Code generation for more toolbox functions . 5-4

Generated Code Improvements . 5-5

Multisignature MEX support for multiple entry-point functions 5-5
Catch and handle exceptions for run-time errors that the generated

standalone C++ code throws . 5-6
C++11 as default language standard for generated C++ code 5-6
Improvement to C++ code generated for enumerations with nonnative size

. 5-7
Generate UTF-8 encoded C/C++ files that work across locales and

platforms . 5-7
Bundled CXSparse files in generated code . 5-8

Code Generation Workflow . 5-9

Improved Representations for Coder Type Objects 5-9
Configuration Parameter Dialog Box: New layout and added functionalities

. 5-10
Display status of code generation at command line 5-10
Format generated code by using clang-format . 5-11
More options to specify multiple entries in code configuration objects . . 5-11
Functionality being removed or changed . 5-12
Target hardware data management . 5-12
Support Package for NVIDIA Jetson and NVIDIA DRIVE platforms 5-12

Performance . 5-13

Multithreading capabilities for more Image Processing Toolbox functions
. 5-13

Automatic parallelization of for loops in generated code 5-13

ix

More optimized inlining behavior of public methods of generated C++
classes . 5-14

Generated code quality improvements . 5-15

Deep Learning with MATLAB Coder . 5-16

Generate code for convolutional LSTM networks 5-16
Generate generic C/C++ code for deep learning layers 5-16
Generate code for dlnetwork workflows that use deep learning arrays . . 5-16
Generate code for convolution layers that performs inference computations

in 8-bit integers . 5-17
Generate code for more layers . 5-17
Generate code that uses newer versions of ARM Compute and Intel MKL-

DNN libraries . 5-18
Functionality being removed or changed . 5-18

Check bug reports for issues and fixes . 5-19

R2020b

MATLAB Programming for Code Generation . 6-2

Generate code for MATLAB code that accesses fields of a structure array
. 6-2

Supported Functions . 6-3

Expanded code generation support for eig function 6-3
Expanded code generation for datetime and duration arrays 6-3
Expanded code generation for tables and timetables 6-4
Expanded code generation for categorical arrays 6-5
Code generation for more MATLAB functions . 6-6
Code generation for more toolbox functions . 6-6

Generated Code Improvements . 6-11

Generate MEX function that has C++ classes for MATLAB classes 6-11
Improved organization of generated C++ code into namespaces 6-11
Improved identifier names in generated C++ code 6-12
Improved file partitioning for generated C++ code 6-13
Clearer pattern of ordering of local variable declarations 6-13

Code Generation Workflow . 6-15

Reserve C/C++ identifier names by using coder.reservedName 6-15
Access license checkout information by using report information object

. 6-15
Directly package generated standalone code by using codegen command

. 6-16
Query capability for target.get function . 6-16
Intel C and C++ toolchain support for Windows 6-16

x Contents

Performance . 6-17

Global Settings for Function Inlining: Fine-tune readability and speed of
generated code . 6-17

JIT support for half-precision floating-point data type 6-18

Deep Learning with MATLAB Coder . 6-19

Deep Learning: Generate code for Long Short-Term Memory (LSTM) layer
. 6-19

Deep Learning: Generate code for custom layers 6-19
Deep Learning: Generate code that uses Intel MKL-DNN library on macOS

platform . 6-19
Deep Learning: Generate code for additional layers 6-19
Functionality being removed or changed . 6-20

Check bug reports for issues and fixes . 6-21

R2020a

MATLAB Programming for Code Generation . 7-2

Generate code for half-precision floating-point data type 7-2
Code generation for datetime arrays . 7-2
Code generation for timetables . 7-2

Supported Functions . 7-3

Code generation for more MATLAB functions . 7-3
Code generation for more toolbox functions . 7-3

Generated Code Improvements . 7-8

Generate C++ classes from MATLAB classes . 7-8
Use dynamically allocated C++ arrays in generated function interfaces

. 7-8
Generate code that uses the C++11 standard math library 7-9
Manage memory for threadprivate variables in generated C++ code 7-9
Generate C++ code that complies with MISRA C++:2008 Rule 3-4-1 . . . 7-10
Generate one MEX function that supports multiple signatures 7-10

Code Generation Workflow . 7-11

Coder Type Editor: Create and edit input types interactively 7-11
Intel C and C++ toolchain support for Windows 7-11

Performance . 7-12

Default code generation setting optimizes build to minimize run time . . . 7-12
Improved performance of code generated for fast Fourier transform (FFT)

functions . 7-12
Improved code quality for functions that allocate handle objects 7-12

xi

Deep Learning with MATLAB Coder . 7-14

Deep Learning: Generate code for Long Short-Term Memory (LSTM) layer
. 7-14

Deep Learning: Generate code for more layers, networks, and classes . . 7-14
Deep Learning: Generate code that uses newer versions of ARM Compute

and Intel MKL-DNN libraries . 7-15

Check bug reports for issues and fixes . 7-16

R2019b

MATLAB Programming for Code Generation . 8-2

Code generation for tables . 8-2
Code generation for duration arrays . 8-2
Code generation for hexadecimal and binary literals 8-2

Supported Functions . 8-3

Code generation for more MATLAB functions . 8-3
Code generation for more toolbox functions . 8-4

Generated Code Improvements . 8-8

Generate C++ code that has more C++ language and object-oriented
features . 8-8

Choose the style of generated #include guards . 8-8
C strings for null-terminated MATLAB strings . 8-8
Improved naming for generated temporary variables 8-9

Code Generation Workflow . 8-10

MATLAB Coder features in MATLAB Online . 8-10
Automatically call initialize function from entry-point functions in the

generated code . 8-10
Access code insights and build logs programmatically by using the report

information object . 8-10
Convert codegen command to equivalent MATLAB Coder project 8-11
Create code configuration object from MATLAB Coder project 8-11
Export of hardware device data . 8-12
Data validation for hardware device features . 8-12
Upgrade of hardware device definitions . 8-13

Performance . 8-14

Improved function inlining readability and predictability 8-14

Deep Learning with MATLAB Coder . 8-15

Deep Learning: Generate code for more layers and networks 8-15

xii Contents

Check bug reports for issues and fixes . 8-18

R2019a

MATLAB Programming for Code Generation . 9-2

Code generation support for class properties with string scalar initial values
. 9-2

Code generation behavior change for character vector or string scalar input
to ismethod . 9-2

Code generation for categorical arrays . 9-2

Supported Functions . 9-3

Code generation for sparse matrix inputs for more functions 9-3
Expanded code generation support for the vecdim input argument 9-3
Code generation for more MATLAB functions . 9-3
Code generation for more 5G Toolbox functions . 9-4
Code generation for more Audio Toolbox functions 9-5
Code generation for more Automated Driving Toolbox functions 9-5
Code generation for more Communications Toolbox functions 9-6
Code generation for more Computer Vision Toolbox functions 9-6
Code generation for more DSP System Toolbox functions 9-7
Code generation for more Image Processing Toolbox functions 9-7
Code generation for more Phased Array System Toolbox functions 9-7
Code generation for more Robotics System Toolbox functions 9-8
Code generation for more Sensor Fusion and Tracking Toolbox functions

. 9-8
Code Generation for SerDes Toolbox Functions . 9-9
Code generation for more Signal Processing Toolbox functions 9-10
Code generation for more Statistics and Machine Learning Toolbox

functions . 9-10
Code generation for more Wavelet Toolbox functions 9-11
Code generation for more WLAN Toolbox functions 9-11

Code Generation Workflow . 9-12

Access information about code generation programmatically by using the
report information object . 9-12

Open code generation reports in any MATLAB installation without MATLAB
Coder . 9-12

Generate parallel for-loops on macOS platform . 9-12
Register new hardware devices . 9-13
Functionality being removed or changed . 9-13

Performance . 9-14

Faster C/C++ MEX function generation . 9-14
Generated code quality improvements . 9-14

Deep Learning with MATLAB Coder . 9-15

xiii

Deep Learning: Generate code for prediction on ARM processors by using
codegen . 9-15

Deep Learning: Generate code for more networks and layers 9-15

Check bug reports for issues and fixes . 9-16

R2018b

MATLAB Programming for Code Generation . 10-2

Sparse Matrices: Generate code for the backslash operation 10-2
Statistics and Machine Learning Toolbox Code Generation: Update deployed

SVM model without regenerating code . 10-2
Class Support: Use objects in more functions and data types 10-2

Supported Functions . 10-3

Sensor Fusion and Tracking Toolbox Code Generation: Generate code to
accelerate and deploy your algorithm . 10-3

5G Toolbox Code Generation: Generate code for downlink physical layer
. 10-3

Fuzzy Logic Toolbox Code Generation: Generate code to load and evaluate
Fuzzy Inference Systems . 10-3

Code generation for more MATLAB Functions . 10-3
Code generation for rng 'shuffle' option . 10-3
Code generation for more Audio Toolbox functions 10-3
Code generation for more Automated Driving System Toolbox functions

. 10-4
Code generation for more Communications Toolbox functions 10-4
Code generation for more Phased Array System Toolbox functions and

System objects . 10-4
Code generation for more Robotics System Toolbox functions 10-4
Code generation for more Statistics and Machine Learning Toolbox

functions . 10-4
Code generation for more WLAN Toolbox functions 10-4

Generated Code Improvements . 10-6

Standard Math Library: Default to C99 standard math library for C 10-6

Code Generation Workflow . 10-7

MATLAB Support Package for Raspberry Pi Hardware: Deploy MATLAB
function to Raspberry Pi . 10-7

Multiple Entry-Point Functions: Simplify input specification by passing an
output as an input . 10-7

Changes to Check for Run-Time Issues step in the MATLAB Coder app
. 10-7

Performance . 10-8

xiv Contents

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific BLAS library 10-8

Compiler Support: Revert to JIT compilation for MEX code generation when
supported compiler not detected . 10-8

Nonfinite Support as Needed: Generate files for nonfinite data support only
when the generated code uses nonfinite data 10-8

Loop Unrolling Threshold: Optimize code generated for loops 10-9

Deep Learning with MATLAB Coder . 10-10

Deep Learning Network Code Generation: Generate C++ code for inference
from a trained convolutional neural network 10-10

Check bug reports for issues and fixes . 10-11

R2018a

MATLAB Programming for Code Generation . 11-2

Sparse Matrices: Enable more efficient computation by using sparse
matrices in generated code . 11-2

Delete Method: Call clean-up code automatically when handle classes are
deleted in generated code . 11-2

Cell Array Support: Import cell arrays into generated code by using
coder.load and load . 11-2

Supported Functions . 11-4

Statistics and Machine Learning Toolbox Code Generation: Generate code
for distance calculation on vectors and matrices, and for prediction by
using k-nearest neighbor with Kd-tree search and nontree ensemble
models . 11-4

Code generation for MATLAB sprintf function . 11-4
Code generation for MATLAB sort function options 11-4
Code generation for more MATLAB functions . 11-4
Code generation for more Audio Toolbox functions 11-5
Code generation for more Communications System Toolbox functions . . . 11-5
Code generation for more Computer Vision System Toolbox functions and

objects . 11-5
Code generation for more DSP System Toolbox functions 11-5
Code generation for more Phased Array System Toolbox System objects

. 11-5
Code generation for more Robotics System Toolbox functions 11-6
Code generation for more Signal Processing Toolbox functions 11-6
Code generation for more Wavelet Toolbox functions 11-6
Code generation for more WLAN System Toolbox System objects 11-6

Generated Code Improvements . 11-7

N-Dimensional Indexing: Enhance readability by preserving array
dimensions in generated code . 11-7

xv

Code Generation Workflow . 11-8

New Code Generation Report: View more information and navigate through
code generation results more easily . 11-8

MEX Profiling: See execution times of generated MEX functions in MATLAB
Profiler . 11-9

Run-Time Error Detection Support for error: Use error with run-time error
detection and reporting in standalone code . 11-9

Performance . 11-10

Row-Major Array Layout: Simplify interfacing generated code with C
environments by storing arrays in row-major layout 11-10

More optimizations in generated code . 11-10

Check bug reports for issues and fixes . 11-11

R2017b

MATLAB Programming for Code Generation . 12-2

Strings: Generate code for MATLAB code that represents text as a string
scalar . 12-2

Cell Arrays and Classes in Structures: Generate code for structures that
contain cell arrays and classes . 12-2

Class Folders: Generate code for MATLAB classes defined by using multiple
files . 12-2

Property Validation: Generate code for classes that restrict property values
. 12-2

Value Class Inputs: Pass objects of value classes to and from extrinsic
functions and as constant inputs to entry-point functions 12-3

Supported Functions . 12-4

Statistics and Machine Learning Toolbox Code Generation: Generate C code
for prediction by using discriminant analysis, k-nearest neighbor, SVM
regression, regression tree ensemble, and Gaussian process regression
models . 12-4

Code generation for more MATLAB functions . 12-4
Code generation for more Audio Toolbox System objects 12-6
Code generation for more Control System Toolbox objects 12-6
Code generation for more DSP System Toolbox System objects 12-6
Code generation for more Phased Array System Toolbox System objects and

functions . 12-6
Code generation for more Robotics System Toolbox functions 12-7
Code generation for more System Identification Toolbox objects 12-7
Code Generation for more WLAN System Toolbox functions 12-7

Code Generation Workflow . 12-8

App Support for Variable Number of Output Arguments: Specify the number
of entry-point function output arguments to generate 12-8

xvi Contents

Clear MEX in App: Reset the state of the Check for Run-Time Issues step
. 12-8

I/O Logging for Fixed-Point Conversion in App: Selectively log and plot
function inputs and outputs at any level of your design 12-8

Performance . 12-11

Fast Fourier Transforms: Generate code that takes advantage of the FFTW
library . 12-11

memcpy and memset for Variable-Size Arrays and Variable Number of
Elements: Optimize code for more copies and assignments 12-11

Global Variables for Constant Values of Aggregate Types: Reduce memory
usage in generated code . 12-12

Reduction of Duplicate Functions and Types: Generate more compact code
. 12-12

Check bug reports for issues and fixes . 12-13

R2017a

MATLAB Programming for Code Generation . 13-2

Value Classes as Entry-Point Function Arguments: Generate code for more
language constructs . 13-2

Nested Functions: Generate code for more language constructs 13-2
Handle classes in value classes . 13-3
Class properties and structure fields passed by reference to external C

functions . 13-3
Function specialization prevention with coder.ignoreConst 13-4
Size argument for coder.opaque . 13-4

Supported Functions . 13-5

Automated Driving System Toolbox Code Generation: Generate code for
sensor fusion and tracking workflow . 13-5

Code generation for more MATLAB functions . 13-6
Code generation for more Audio Toolbox System objects 13-6
Code generation for more Communications System Toolbox System objects

. 13-6
Code generation for more DSP System Toolbox System objects 13-6
Code generation for more Phased Array System Toolbox functions and

System objects . 13-6
Code generation for more Robotics System Toolbox functions and classes

. 13-7
Code generation for more Signal Processing Toolbox functions 13-7
Statistics and Machine Learning Toolbox Code Generation: Generate C code

for prediction by using linear models, generalized linear models, decision
trees, and ensembles of classification trees . 13-7

Code generation for more WLAN System Toolbox functions and System
objects . 13-8

Generated Code Improvements . 13-9

xvii

emxArray interface and utility files generated with single-file partitioning
. 13-9

Additional C and C++ Keywords in List of Reserved Keywords 13-9

Code Generation Workflow . 13-11

Potential Differences Reporting: Identify MATLAB code that might behave
differently in generated code . 13-11

More flexible specification of number of entry-point function arguments
. 13-11

MEX function generation and testing in one step with codegen -test option
. 13-12

More fixed-size variable information in Convert to Fixed-Point step of
MATLAB Coder app . 13-12

Performance . 13-14

Loop Invariant Code Motion: Generate optimized code for loops 13-14
Constant folding of value classes . 13-14
New coder.unroll syntax for more readable code 13-14

Check bug reports for issues and fixes . 13-16

R2016b

MATLAB Programming for Code Generation . 14-2

Recursive Functions and Anonymous Functions: Generate code for more
MATLAB language constructs . 14-2

Variable-Size Cell Array Support: Use cell to create a variable-size cell array
for code generation . 14-2

Code generation error for testing equality between enumeration and
character array . 14-3

Supported Functions . 14-4

I/O Support: Generate code for fseek, ftell, fwrite 14-4
Statistics and Machine Learning Toolbox Code Generation: Generate code

for prediction by using SVM and logistic regression models 14-4
Communications and DSP Code Generation: Generate code for more

functions . 14-4
Wavelet Toolbox Code Generation: Generate code for discrete wavelet

analysis, synthesis, and denoising functions . 14-5
Code generation for additional MATLAB functions 14-6
Code generation for additional Audio Toolbox functions 14-6
Code generation for additional Computer Vision Toolbox functions 14-6
Code generation for additional Robotics System Toolbox functions 14-6
Code generation for extendedKalmanFilter and unscentedKalmanFilter with

Control System Toolbox or System Identification Toolbox 14-7

Generated Code Improvements . 14-8

xviii Contents

Targeted Include Statements for coder.cinclude: Generate include
statements only where indicated . 14-8

Generated Code Readability: Generate more readable code for control flow
. 14-8

Code Generation Workflow . 14-10

Change to default standard math library for C++ 14-10
Simplified type definition in the MATLAB Coder app 14-10
More discoverable build log and errors in MATLAB Coder app 14-11
Improved workflow for collecting and analyzing ranges in MATLAB Coder

app . 14-11
More discoverable logs and reports for fixed-point conversion in MATLAB

Coder app . 14-12
Hierarchical packaging of generated code in MATLAB Coder app 14-13

Performance . 14-14

JIT MEX Compilation: Use JIT compilation to reduce code generation times
for MEX . 14-14

Change in default value for preserve variable names option 14-14

Check bug reports for issues and fixes . 14-15

R2016a

MATLAB Programming for Code Generation . 15-2

Cell Array Support: Use additional cell array features in MATLAB code for
code generation . 15-2

Concatenation of Variable-Size Empty Arrays: Generate code for
concatenation when a component array is empty 15-2

Supported Functions . 15-5

Non-Power-of-Two FFT Support: Generate code for fast Fourier transforms
for non-power-of-two transform lengths . 15-5

Computer Vision System Toolbox and Image Processing Toolbox Code
Generation: Generate code for additional functions 15-5

xcorr Code Generation: Generate faster code for xcorr with long input
vectors . 15-5

Code generation for additional MATLAB functions 15-5
Changes to code generation support for MATLAB functions 15-5
Code generation for Audio Toolbox functions and System objects 15-6
Code generation for additional Communications System Toolbox functions

. 15-6
Code generation for additional DSP System Toolbox 15-6
Code generation for additional Phased Array System Toolbox functions

. 15-6
Code generation for additional Robotics System Toolbox functions 15-6
Code generation for WLAN System Toolbox functions and System objects

. 15-7

xix

Code Generation Workflow . 15-8

MATLAB Coder Student Access: Obtain MATLAB Coder as student-use, add-
on product or with MATLAB Primary and Secondary School Suite 15-8

MATLAB Coder App Line Execution Count: See how well test exercises
MATLAB code . 15-8

MATLAB Coder App Undo and Redo: Easily revert changes to type
definitions . 15-9

MATLAB Coder App Error Table: View complete error message 15-10
Changes to Fixed-Point Conversion Code Coverage 15-11
More Keyboard Shortcuts in Code Generation Report: Navigate the report

more easily . 15-12

Performance . 15-14

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific LAPACK library 15-14

memset Optimization for More Cases: Optimize code that assigns a constant
value to consecutive array elements . 15-14

Optimization for Conditional and Boolean Expressions: Generate efficient
code for more cases . 15-15

Check bug reports for issues and fixes . 15-16

R2015aSP1

Bug Fixes

Check bug reports for issues and fixes . 16-2

R2015b

Cell Array Support: Generate C code from MATLAB code that uses cell
arrays . 17-2

Faster MEX Functions for Linear Algebra: Generate MEX functions that
take advantage of LAPACK . 17-2

Double-Precision to Single-Precision Conversion: Convert double-
precision MATLAB code to single-precision C code 17-2

Run-Time Checks in Standalone C Code: Detect and report run-time
errors while testing generated standalone libraries and executables
. 17-3

Multicore Capable Functions: Generate OpenMP-enabled C code from
more than twenty MATLAB mathematics functions 17-3

xx Contents

Image Processing Toolbox and Computer Vision System Toolbox Code
Generation: Generate code for additional functions in these toolboxes
. 17-3

Image Processing Toolbox . 17-3
Computer Vision System Toolbox . 17-4

Statistics and Machine Learning Toolbox Code Generation: Generate code
for kmeans and randsample . 17-4

Simplified hardware specification in the MATLAB Coder app 17-4

MATLAB Coder app user interface improvements 17-6
Improvements for manual type definition . 17-6
Tab completion for specifying files . 17-6
Compatibility between the app colors and MATLAB preferences 17-7
Progress indicators for the Check for Run-Time Issues step 17-7

Saving and restoring of workflow state between MATLAB Coder app
sessions . 17-7

Project reuse between MATLAB Coder and HDL Coder 17-7

Code generation using freely available MinGW-w64 compiler 17-8

codegen debug option for libraries and executables 17-8

Code generation for additional MATLAB functions 17-8
Data Types in MATLAB . 17-8
String Functions in MATLAB . 17-8

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects
. 17-9

Communications System Toolbox . 17-9
DSP System Toolbox . 17-9
Phased Array System Toolbox . 17-9

Code generation for Robotics System Toolbox functions and System
objects . 17-9

Code generation for System Identification Toolbox functions and System
objects . 17-9

Fixed-Point Conversion Enhancements . 17-10
Saving and restoring fixed-point conversion workflow state in the app . 17-10
Reuse of MEX files during fixed-point conversion using the app 17-10
Specification of additional fimath properties in app editor 17-10
Improved management of comparison plots . 17-10
Variable specializations . 17-11
Detection of multiword operations . 17-12

Check bug reports for issues and fixes . 17-2

xxi

R2015a

Improved MATLAB Coder app with integrated editor and simplified
workflow . 18-2

Generation of example C/C++ main for integration of generated code into
an application . 18-3

Better preservation of MATLAB variable names in generated code 18-3

More efficient generated code for logical indexing 18-4

Code generation for additional Computer Vision System Toolbox and
Computer Vision System Toolbox functions . 18-4

Image Processing Toolbox . 18-4
Computer Vision System Toolbox . 18-4

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects
. 18-5

Communications System Toolbox . 18-5
DSP System Toolbox . 18-5
Phased Array System Toolbox . 18-5

Code generation for additional Statistics and Machine Learning Toolbox
functions . 18-6

Code generation for additional MATLAB functions 18-6
Linear Algebra . 18-6
Statistics in MATLAB . 18-6

Code generation for additional MATLAB function options 18-6

Conversion from project to MATLAB script using MATLAB Coder app
. 18-6

Improved recognition of compile-time constants 18-7

Improved emxArray interface function generation 18-7
emxArray interface functions for variable-size arrays that external C/C++

functions use . 18-8
Functions to initialize output emxArrays and emxArrays in structure outputs

. 18-8
External definition of a structure that contains emxArrays 18-8

Code generation for casts to and from types of variables declared using
coder.opaque . 18-8

Generation of reentrant code without an Embedded Coder license 18-9

Code generation for parfor-loops with stack overflow 18-10

xxii Contents

Change in default value of the PassStructByReference code configuration
object property . 18-10

Change in GLOBALS variable in scripts generated from a project 18-10

Target build log display for command-line code generation when
hyperlinks disabled . 18-11

Removal of instrumented MEX output type . 18-11

Truncation of long enumerated type value names that include the class
name prefix . 18-11

Fixed-point conversion enhancements . 18-12
Support for multiple entry-point functions . 18-12
Support for global variables . 18-12
Code coverage-based translation . 18-12
Generated fixed-point code enhancements . 18-12
Automated fixed-point conversion of additional DSP System Toolbox objects

. 18-13
New interpolation method for generating lookup table MATLAB function

replacements . 18-13

Check bug reports for issues and fixes . 18-14

R2014b

Code generation for additional Image Processing Toolbox and Computer
Vision System Toolbox functions . 19-2

Image Processing Toolbox . 19-2
Computer Vision System Toolbox . 19-2

Code generation for additional Communications System Toolbox and DSP
System Toolbox functions and System objects 19-2

Communications System Toolbox . 19-2
DSP System Toolbox . 19-2

Code generation for enumerated types based on built-in MATLAB integer
types . 19-3

Code generation for function handles in structures 19-4

Change in enumerated type value names in generated code 19-4

Code generation for ode23 and ode45 ordinary differential equation
solvers . 19-4

Code generation for additional MATLAB functions 19-5
Data and File Management in MATLAB . 19-5
Linear Algebra in MATLAB . 19-5
String Functions in MATLAB . 19-5

xxiii

Code generation for additional MATLAB function options 19-5

Collapsed list for inherited properties in code generation report 19-5

Change in length of exported identifiers . 19-5

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation . 19-6

Fixed-point conversion enhancements . 19-6
Conversion from project to MATLAB scripts for command-line fixed-point

conversion and code generation . 19-6
Lookup table approximations for unsupported functions 19-7
Enhanced plotting capabilities . 19-7
Automated fixed-point conversion for commonly used System objects in

MATLAB including Biquad Filter, FIR Filter, and Rate converter 19-8
Additional fixed-point conversion command-line options 19-8
Type proposal report . 19-8
Generated fixed-point code enhancements . 19-9
Highlighting of potential data type issues in generated HTML report . . . 19-9

Check bug reports for issues and fixes . 19-11

R2014a

Code generation for additional Image Processing Toolbox and Computer
Vision System Toolbox functions . 20-2

Image Processing Toolbox . 20-2
Computer Vision System Toolbox . 20-2

Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox functions
and System objects . 20-2

Signal Processing Toolbox . 20-2
Communications System Toolbox . 20-2
DSP System Toolbox . 20-2

Code generation for fminsearch optimization function and additional
interpolation functions in MATLAB . 20-3

Optimization Functions in MATLAB . 20-3
Interpolation and Computational Geometry in MATLAB 20-3

Conversion from project to MATLAB script for command-line code
generation . 20-3

Code generation for fread function . 20-4

Automatic C/C++ compiler setup . 20-4

Compile-time declaration of constant global variables 20-4

xxiv Contents

Enhanced code generation support for switch statements 20-4

Code generation support for value classes with set.prop methods 20-5

Code generation error for property that uses AbortSet attribute 20-5

Independent configuration selections for standard math and code
replacement libraries . 20-5

Restrictions on bit length for integer types in a
coder.HardwareImplementation object . 20-7

Change in location of interface files in code generation report 20-7

Compiler warnings in code generation report . 20-7

Removal of date and time comment from generated code files 20-7

Removal of two's complement guard from rtwtypes.h 20-8

Removal of TRUE and FALSE from rtwtypes.h . 20-8

Change to default names for structure types generated from entry-point
function inputs and outputs . 20-8

Toolbox functions supported for code generation 20-9

Fixed-point conversion enhancements . 20-10
Overflow detection with scaled double data types in MATLAB Coder projects

. 20-10
Support for MATLAB classes . 20-10
Generated fixed-point code enhancements . 20-10
Fixed-point report for float-to-fixed conversion 20-11

Check bug reports for issues and fixes . 20-12

R2013b

Code generation for Statistics Toolbox and Phased Array System Toolbox
. 21-2

Toolbox functions supported for code generation 21-2

parfor function for standalone code generation, enabling execution on
multiple cores . 21-2

Persistent variables in parfor-loops . 21-3

Random number generator functions in parfor-loops 21-3

xxv

External code integration using coder.ExternalDependency 21-3

Updating build information using coder.updateBuildInfo 21-3

Generation of simplified code using built-in C types 21-3

Conversion of MATLAB expressions into C constants using coder.const
. 21-4

Highlighting of constant function arguments in the compilation report
. 21-4

Code Generation Support for int64, uint64 data types 21-4

C99 long long integer data type for code generation 21-4

Change to passing structures by reference . 21-5

coder.runTest new syntax . 21-5

coder.target syntax change . 21-5

Changes for complex values with imaginary part equal to zero 21-5

Subfolder for code generation interface files . 21-6

Support for LCC compiler on Windows 64-bit machines 21-6

Fixed-Point conversion enhancements . 21-6

Check bug reports for issues and fixes . 21-8

R2013a

Automatic fixed-point conversion during code generation (with Fixed-
Point Designer) . 22-2

File I/O function support . 22-2

Support for nonpersistent handle objects . 22-2

Structures passed by reference to entry-point functions 22-2

Include custom C header files from MATLAB code 22-3

Load from MAT-files . 22-3

coder.opaque function enhancements . 22-3

Automatic regeneration of MEX functions in projects 22-4

xxvi Contents

MEX function signatures include constant inputs 22-4

Custom toolchain registration . 22-4

Complex trigonometric functions . 22-5

parfor function reduction improvements and C support 22-5

Support for integers in number theory functions 22-5

Enhanced support for class property initial values 22-6

Optimized generated code for x=[x c] when x is a vector 22-7

Default use of Basic Linear Algebra Subprograms (BLAS) libraries 22-7

Changes to compiler support . 22-7

New toolbox functions supported for code generation 22-7

Functions being removed . 22-8

Check bug reports for issues and fixes . 22-10

R2012b

parfor function support for MEX code generation, enabling execution on
multiple cores . 23-2

Code generation readiness tool . 23-2

Reduced data copies and lightweight run-time checks for generated MEX
functions . 23-2

Additional string function support for code generation 23-2

Visualization functions in generated MEX functions 23-2

Input parameter type specification enhancements 23-3

Project import and export capability . 23-3

Package generated code in zip file for relocation 23-4

Fixed-point instrumentation and data type proposals 23-4

New toolbox functions supported for code generation 23-4

New System objects supported for code generation 23-4

xxvii

Check bug reports for issues and fixes . 23-6

R2012a

Code Generation for MATLAB Classes . 24-2

Dynamic Memory Allocation Based on Size . 24-2

C/C++ Dynamic Library Generation . 24-2

Automatic Definition of Input Parameter Types . 24-2

Verification of MEX Functions . 24-2

Enhanced Project Settings Dialog Box . 24-3

Projects Infer Input Types from assert Statements in Source Code 24-3

Code Generation from MATLAB . 24-3

New Demo . 24-3

Check bug reports for issues and fixes . 24-4

R2011b

Support for Deletion of Rows and Columns from Matrices 25-2

Code Generation from MATLAB . 25-2

Check bug reports for issues and fixes . 25-3

R2011a

New User Interface for Managing Projects . 26-2
To Get Started . 26-2

Migrating from Real-Time Workshop emlc Function 26-2
New codegen Options . 26-2
New Code Generation Configuration Objects . 26-3
The codegen Function Has No Default Primary Function Input Type 26-4

xxviii Contents

The codegen Function Processes Compilation Options in a Different Order
. 26-4

New coder.Type Classes . 26-4

New coder Package Functions . 26-5

Script to Upgrade MATLAB Code to Use MATLAB Coder Syntax 26-5

Embedded MATLAB Now Called Code Generation from MATLAB 26-5

MATLAB Coder Uses rtwTargetInfo.m to Register Target Function
Libraries . 26-5

New Getting Started Tutorial Video . 26-5

New Demos . 26-5

Functionality Being Removed in a Future Version 26-6

Function Elements Being Removed in a Future Release 26-7

Check bug reports for issues and fixes . 26-8

xxix

R2023a

Version: 5.6

New Features

Bug Fixes

Compatibility Considerations

1

MATLAB Programming for Code Generation
Name-Value Argument Validation: Generate code for arguments blocks
in MATLAB functions
In R2023a, you can generate code for arguments blocks that validate name-value arguments in your
MATLAB function. You declare name-value arguments in an arguments block using dot notation to
define the fields of a structure. See “Validate Name-Value Arguments”.

In this example code snippet, the structure named NameValueArgs defines two name-value
arguments, Name1 and Name2. You can use any valid MATLAB identifier for the structure name and
the field names.

function result = myFunction(NameValueArgs)
 arguments
 NameValueArgs.Name1
 NameValueArgs.Name2
 end
 ...
end

Code generation supports most features of arguments blocks for name-value arguments, including
size and class validation, validation functions, and default values. Code generation also supports the
namedargs2cell function.

Code generation does not support these features of name-value argument validation:

• Name-value input arguments at entry-point functions
• Name-value arguments from class properties using the structName.?ClassName syntax

See “Generate Code for arguments Block That Validates Input and Output Arguments”.

Output Argument Validation: Generate code for arguments(Output)
blocks in MATLAB functions
In R2023a, you can generate code for arguments blocks that perform output argument validation in
your MATLAB function. Output argument validation declares specific restrictions on function output
arguments. Using argument validation, you can constrain the class, size, and other aspects of
function output values without writing code in the body of the function to perform these tests.

Code generation supports most features of arguments blocks for output variables, including size and
class validation, and validation functions. For repeating output arguments, code generation does not
support size validation, class validation, and validation functions.

See “Generate Code for arguments Block That Validates Input and Output Arguments”.

Input Argument Validation: Use any name for repeating input
arguments
In R2023a, you can use any valid MATLAB identifier for the name of a repeating input argument
inside an arguments block. Code generation only supports a single repeating argument for a
function.

R2023a

1-2

In previous releases, code generation supported only varargin as a repeating input argument.

Generate code for growing arrays with (end + 1) indexing
In R2023a, you can generate code for MATLAB code that uses the (end + 1) indexing syntax to
grow the size of arrays. For example, you can generate code for this code snippet:

...
a = [1 2 3 4 5 6];
a(end + 1) = 7;

b = [1 2];
for i = 3:10
 b(end + 1) = i;
end
...

To use this functionality, make sure that the code generation configuration property
EnableVariableSizing or the corresponding setting Enable variable-sizing in the MATLAB
Coder app is enabled. See “Generate Code for Growing Arrays and Cell Arrays with end + 1
Indexing”.

Generate code for uint32 enumerations
In R2023a, you can generate code for a MATLAB enumeration that derives from the base type
uint32. For members of uint32 enumerations, code generation supports values that are less than
or equal to intmax("int32"). See “Code Generation for Enumerations”.

coder.read and coder.write: Read data from .coderdata file into your
deployed application
In R2023a, you can use the coder.read function to read data from .coderdata files. In contrast
with MAT-files that can be read only inside the MATLAB environment, you can read .coderdata files
on any deployment platform that supports a file system. In addition, the .coderdata format supports
most primitive and aggregate MATLAB data types, including arrays, structures, and cell arrays. So,
the C/C++ code generated for coder.read can be used to read complex aggregate data
from .coderdata files into your deployed application.

To export MATLAB data to .coderdata files, use the coder.write function. This function is not
supported for code generation.

The code generated for coder.read has two distinct advantages over the code generated for the
coder.load function:

• You can update the data stored in .coderdata files without having to regenerate code, as long as
the type and size of the new data matches those of the old data.

• The data is not hard-coded in the generated code, thereby improving the readability of the
generated code.

This is an example workflow that uses the coder.read and coder.write functions:

1 Use the coder.write function at the MATLAB command line to store the data in .coderdata
files. For example, create a file named myfile.coderdata by using these commands:

 MATLAB Programming for Code Generation

1-3

c = rand(100);
coder.write('myfile.coderdata',c);

2 In your MATLAB entry-point function (for which you intend to generate code), use the
coder.read function to read data from the .coderdata files. For example:

function y = my_entry_point(x) %#codegen
dataOut = coder.read('myfile.coderdata');
y = x + mean(dataOut,"all");
end

3 Generate MEX or standalone C/C++ code for the entry-point function by using the codegen
command or the MATLAB Coder app. For example, generate a MEX function
my_entry_point_mex and then call the generated MEX by running these commands:

codegen my_entry_point -args {0}
my_entry_point_mex(1)

Code generation successful.

ans =

 1.4996

4 You can now update the data stored in myfile.coderdata to a different 100-by-100 array of
double type. If you then call my_entry_point_mex that you already generated, the MEX now
reads and uses the new data.

d = rand(100) - 1;
coder.write('myfile.coderdata',d);
my_entry_point_mex(1)

Wrote file 'myfile.coderdata'. You can read this file with 'coder.read'.

ans =

 0.4963

For more information and examples, see coder.read, coder.write, and “Data Read and Write
Considerations”.

Dynamic memory allocation for fixed-size arrays
Starting in R2023a, you can dynamically allocate memory to heap for fixed-size arrays. By default,
dynamic memory allocation for fixed-size arrays is disabled.

To enable dynamic memory allocation for fixed-size arrays:

• In a configuration object for code generation, set the EnableDynamicMemoryAllocation and
DynamicMemoryAllocationForFixedSizeArrays parameters to true.

• In the MATLAB Coder app, in the Memory settings, select Enable dynamic memory allocation
and Enable dynamic memory allocation for fixed-sized arrays.

For more information, see “Control Dynamic Memory Allocation for Fixed-Size Arrays”.

R2023a

1-4

Compatibility Considerations
The DynamicMemoryAllocation configuration option will be removed in a future release. To
dynamically allocate memory for variable-sized arrays, use the EnableDynamicMemoryAllocation
option. To set the threshold, use the DynamicMemoryAllocationThreshold option.

 MATLAB Programming for Code Generation

1-5

Supported Functions

Code generation for more MATLAB functions
• cd
• filesep
• griddedInterpolant
• inedges
• isfile
• isfolder
• ismac
• ispc
• isuniform
• isunix
• mape
• mustBeFile
• mustBeFolder
• mustBeInRange
• namedargs2cell
• NET.isNETSupported
• num2cell
• outedges
• pathsep
• polyshape
• predecessors
• pwd
• rmse
• strcat
• successors
• warning

Code generation for more toolbox functions
In R2023a, you can generate code for many additional toolbox functions and objects. For a list of all
functions and objects that are supported for code generation, see:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

These are links to the release notes of some toolboxes that added code generation support in R2023a:

R2023a

1-6

https://www.mathworks.com/help/releases/R2022b/matlab/ref/griddedinterpolant.html

Computer Vision Toolbox

See “Generate C and C++ Code Using MATLAB Coder: Support for functions” (Computer Vision
Toolbox).

Image Processing Toolbox

See “C Code Generation: Generate code from additional functions using MATLAB Coder” (Image
Processing Toolbox).

Signal Processing Toolbox

See “C/C++ Code Generation Support: Code generation for digital filter design, multirate signal
processing, and waveform generation” (Signal Processing Toolbox).

Statistics and Machine Learning Toolbox

See “Generate C/C++ code for prediction using Gaussian kernel classification and regression models
(requires MATLAB Coder)” (Statistics and Machine Learning Toolbox).

Wavelet Toolbox

See “C/C++ Code Generation: Automatically generate code for wavelet functions” (Wavelet Toolbox).

 Supported Functions

1-7

Generated Code Improvements

Generate C++11 code that passes variables by reference
In R2023a, when you generate C++11 code for your MATLAB code, the code generator passes
pointer arguments as references whenever it can establish that those arguments are not null. This
behavior applies to functions that are not entry-point functions. Passing function arguments by
reference improves MISRA™ compliance and makes the generated code more idiomatic.

Improved quality of code generated for logical indexing operations
In R2023a, the code generated for logical indexing operations in MATLAB is more readable and
closer to hand-written C/C++ code for such operations. In some situations, the generated code can
also have better performance compared to previous releases.

MATLAB Code R2023a Generated Code R2022b Generated Code
% entry-point function
function A = foo(A)
A(A < 0) = A(A < 0) * -1;
end

% code generation
codegen -config:lib foo -args {coder.typeof(1,[5 5],[1 1])}

void foo(double A_data[], const int A_size[2])
{
 int end;
 int i;
 end = A_size[0] * A_size[1] - 1;
 for (i = 0; i <= end; i++) {
 double d;
 d = A_data[i];
 if (d < 0.0) {
 d = -d;
 A_data[i] = d;
 }
 }
}

void foo(double A_data[], const int A_size[2])
{
 double b_A_data[25];
 int end_tmp;
 int i;
 int partialTrueCount;
 int trueCount;
 signed char b_tmp_data[25];
 signed char tmp_data[25];
 end_tmp = A_size[0] * A_size[1] - 1;
 trueCount = 0;
 partialTrueCount = 0;
 for (i = 0; i <= end_tmp; i++) {
 if (A_data[i] < 0.0) {
 trueCount++;
 tmp_data[partialTrueCount] = (signed char)(i + 1);
 partialTrueCount++;
 }
 }
 partialTrueCount = 0;
 for (i = 0; i <= end_tmp; i++) {
 if (A_data[i] < 0.0) {
 b_tmp_data[partialTrueCount] = (signed char)(i + 1);
 partialTrueCount++;
 }
 }
 for (end_tmp = 0; end_tmp < trueCount; end_tmp++) {
 b_A_data[end_tmp] = -A_data[tmp_data[end_tmp] - 1];
 }
 for (end_tmp = 0; end_tmp < trueCount; end_tmp++) {
 A_data[b_tmp_data[end_tmp] - 1] = b_A_data[end_tmp];
 }
}

R2023a

1-8

Improved loop fusion for vectorized operations that use variable-size
arrays
Vectorized operations involving arrays in your MATLAB code get converted to loops in the generated
code. If the arrays are variable-size, the corresponding loop upper bounds are also variable-size. In
R2023a, if the code generator produces multiple loops that have identical variable-size upper bounds,
it often fuses them into a single loop. This optimization is likely to improve both the performance and
the readability of the generated code.

MATLAB Code R2023a Generated Code R2022b Generated Code
% entry-point function
function A = bar(B)
A = [B;B];
end

% code generation
codegen -config:lib bar -args {coder.typeof(1,[10 10],[1 1])}

...
 for (i = 0; i < result; i++) {
 for (i1 = 0; i1 < input_sizes_idx_0_tmp; i1++) {
 A_data[i1 + A_size[0] * i] = B_data[i1 + input_sizes_idx_0 * i];
 }
 for (i1 = 0; i1 < sizes_idx_0_tmp; i1++) {
 A_data[(i1 + input_sizes_idx_0) + A_size[0] * i] =
 B_data[i1 + sizes_idx_0 * i];
 }
 }
...

...
 for (i = 0; i < result; i++) {
 for (i1 = 0; i1 < input_sizes_idx_0_tmp; i1++) {
 A_data[i1 + A_size[0] * i] = B_data[i1 + input_sizes_idx_0 * i];
 }
 }
 for (i = 0; i < result; i++) {
 for (i1 = 0; i1 < sizes_idx_0_tmp; i1++) {
 A_data[(i1 + input_sizes_idx_0) + A_size[0] * i] =
 B_data[i1 + sizes_idx_0 * i];
 }
 }
...

Removed redundant operations that use identical values
In R2023a, the generated code no longer contains some redundant operations that access values that
are identical at run time. By eliminating these redundant operations, the generated code shows
improved execution speed.

For example, consider this sigmoid function, which uses a variable-size input.

function sigm = sigmoidFcn(x)
 sigm = 1 ./ (1 + exp(-x));
end

In R2022b, the generated code for sigmoidFcn contained this code, which accesses the data in the
sigm_data array in three separate for loops.

 int32_T k;
 int32_T loop_ub;
 sigm_size[0] = x_size[0];
 sigm_size[1] = x_size[1];
 loop_ub = x_size[0] * x_size[1];
 for (k = 0; k < loop_ub; k++) {
 sigm_data[k] = -x_data[k];
 }

 loop_ub = x_size[0] * x_size[1];
 for (k = 0; k < loop_ub; k++) {
 sigm_data[k] = exp(sigm_data[k]);
 }

 for (k = 0; k < loop_ub; k++) {

 Generated Code Improvements

1-9

 sigm_data[k] = 1.0 / (sigm_data[k] + 1.0);
 }

In R2023a, the generated code combines the operations and accesses the data in the sigm_data
array in only one for loop.

 int32_T k;
 int32_T loop_ub_tmp;
 sigm_size[0] = x_size[0];
 sigm_size[1] = x_size[1];
 loop_ub_tmp = x_size[0] * x_size[1];
 for (k = 0; k < loop_ub_tmp; k++) {
 sigm_data[k] = 1.0 / (exp(-x_data[k]) + 1.0);
 }

The generated code produces the same output as the code from R2022b, but the R2023a code
accesses the array data fewer times and shows improved execution speed.

R2023a

1-10

Code Generation Workflow

Generate generic CMakeLists.txt file when you generate source code
only
In R2023a, when you generate only the C/C++ source code for your MATLAB code, you can instruct
the code generator to also produce a CMakeLists.txt file that does not depend on specific build
tools. Do one of the following:

• In a coder.CodeConfig or coder.EmbeddedCodeConfig object, set the Toolchain property
to "CMake".

• In the MATLAB Coder app, in the Generate Code step, on the More Settings > Hardware tab,
set Toolchain to CMake.

See “Configure CMake Build Process”.

Improved Error Recovery: Code generation produces fewer unhelpful
cascading errors
In previous releases, a single unsupported construct in your MATLAB code often produced multiple
cascading errors during code generation. In such situations, only the first error was helpful because
fixing it also fixed the subsequent cascading errors. In R2023a, for most situations, code generation
only produces the initial error and suppresses the subsequent unhelpful cascading errors.

Functionality being removed or changed
Specifying Multiple Files or Paths for a Configuration Property by Using Character Vector to
be Removed
Warns

In a future release, the capability to specify multiple file names or paths for the CustomInclude,
CustomLibrary, and CustomSource code configuration properties by using character vectors or
string scalars that have delimiters will be removed. Use string arrays or cell arrays of character
vectors instead. For example, to include multiple folder names, set the CustomInclude property by
using either of these syntaxes:

• Use string array: cfg.CustomInclude = ["C:\Project","C:\Custom Files"]
• Use cell array of character vectors: cfg.CustomInclude = {'C:\Project','C:\Custom

Files'}

 Code Generation Workflow

1-11

Performance

Generate standalone code that uses built-in FFTW library
In R2023a, the required FFTW library is shipped with MATLAB and the code generation process is
simpler compared to previous releases. To generate code that produces calls to this built-in FFTW
library for fast Fourier transform (FFT) functions in your MATLAB code, do one of the following:

• In a coder.CodeConfig or coder.EmbeddedCodeConfig object, set the property
UseBuiltinFFTWLibrary to true.

• In the MATLAB Coder app, on the Custom Code tab, select the Use built-in FFTW library
option.

Prior to R2023a, to generate code that uses the FFTW library, you had to install the FFTW library,
write a custom callback class to specify the FFTW library installation using
coder.fftw.StandaloneFFTW3Interface, and then set the configuration parameter Custom
FFT library callback (CustomFFTCallback) to the name of the callback class. This functionality
continues to exist and is particularly useful if you want to either customize the FFTW options or use
your own compiled version of the FFTW library for deployment on an embedded device. See “Speed
Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls”.

Loop Optimization: Use coder.loop.Control objects to improve for loop
performance in generated code
In R2023a, you can instruct the code generator to transform specific for loops in your MATLAB code
in a variety of ways (such as parallelize or vectorize) during code generation. These transforms can
often improve the run-time performance of large loops. To specify these transforms, use the following
directives in your MATLAB functions for which you intend to generate code:

• coder.loop.interchange: Interchange nested loops to improve cache performance when
accessing array elements.

• coder.loop.parallelize: Parallelize loop execution to improve speed by utilizing available
threads.

• coder.loop.reverse: Reverse the execution order of loop iterations. In some situations, the
reversed loop execution can be faster.

• coder.loop.tile: Tile loop nests to reduce memory access latency.
• coder.loop.unrollAndJam: Unroll and jam loops to improve cache locality.
• coder.loop.vectorize: Generate code that uses SIMD instructions to apply an operation

simultaneously to multiple instances.

In your MATLAB code, call the directive immediately before the loop you intend to transform. You can
combine multiple transforms into a single call by using the dot builder syntax shown in this code
snippet. Use the loop index variable name to specify the loop to which you intend to apply a certain
transform.

coder.loop.parallelize('loopId').interchange('loopId','loopId2');
for loopId = 1:100
 for loopId2 = 1:100
...
end

R2023a

1-12

In some situations, you might want to combine multiple transforms in more complex ways than is
possible by using this simple dot builder syntax. For example, you might want to apply one of the
transforms only if a certain compile-time condition is satisfied. In such situations, use the
coder.loop.Control objects and the associated object functions. For example:

...
loopControl = coder.loop.Control;
loopControl = loopControl.parallelize('loopId');

% You can apply multiple transforms to the same object
if inputVal > threshold
 loopControl = loopControl.interchange('loopId','loopId2');
end

% Call the apply method to inform the code
% generator to affect the loops in the generated code
loopControl.apply;

for loopId = 1:100
 for loopId2 = 1:100
...
end

See “Optimize Loops in Generated Code”.

Generate SIMD instructions in MEX code
In R2023a, you can improve the performance of generated MEX code on Intel® and AMD® platforms
by including vectorized SIMD instructions in the generated code. Set the new configuration
parameter Hardware SIMD acceleration or the command-line property SIMDAcceleration to one
of these values:

• Portable (default) — Use the SSE2 instruction set
• Full — Use the AVX2 instruction set
• None — Do not use instruction sets

MATLAB Coder generates portable MEX code using the SSE2 instruction set by default. For more
information, see “Generate SIMD Code for MATLAB Functions”.

Functionality being removed or changed
Code generator no longer produces calls to FFTW cleanup functions
Behavior change

In previous releases, when you used the coder.fftw.StandaloneFFTW3Interface callback class
to generate standalone code that calls FFTW library functions, the generated terminate function
included calls to one or more of the following memory cleanup functions.

• fftw_cleanup
• fftwf_cleanup
• fftw_cleanup_threads
• fftwf_cleanup_threads

 Performance

1-13

These functions are called to clean up memory that the FFTW library functions use while the calling
process is still running. By contrast, when the calling process terminates, FFTW library functions
automatically free the memory and these cleanup functions don't need to be called.

In R2023a, these functions calls are no longer included in the generated terminate function. To clean
up memory that the FFTW library functions use while the calling process is still running, you must
incorporate the generated code into your own project and manually call the appropriate cleanup
function after executing the generated code. Follow these rules to decide which cleanup function to
use:

• If you use single-precision floating point numbers in calls to FFT functions, use the fftwf prefixed
cleanup functions.

• If you use double-precision floating point numbers in calls to FFT functions, use the fftw prefixed
cleanup functions.

• If your implementation of the coder.fftw.StandaloneFFTW3Interface.getNumThreads
method returns a value that is greater than 1, use the cleanup functions that have the threads
suffix.

See “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library
Calls”.

R2023a

1-14

Deep Learning with MATLAB Coder

Generate code for variable-size dlarray data type
In R2023a, you can generate code for MATLAB code that uses variable-size dlarray objects.

For example, define this MATLAB design file:

function out = fooAdd(in1,in2) %#codegen
dlIn1_1 = dlarray(in1);
dlIn1_2 = dlarray(in2);
out = dlIn1_1 + dlIn1_2;
end

Specify the two inputs in1 and in2 to be unbounded two-dimensional arrays of single type. Create
the appropriate code configuration object cfg to generate generic C MEX code for fooAdd. Generate
MEX code and run the generated MEX.

t_in1 = coder.typeof(single(1),[inf inf],[1 1]);
t_in2 = coder.typeof(single(1),[inf inf],[1 1]);

codegen fooAdd -args {t_in1,t_in2} -report

out = fooAdd_mex(single(eye(4,4)),single(ones(4,1)));

When generating code for variable-size dlarray objects, adhere to these restrictions:

• The U dimension of a dlarray object must be of fixed size.
• If the dlarray data format fmt contains only one character, the corresponding data array X can

have only one variable-size dimension. All other dimensions of X must be singleton.
• For operations between a dlarray object and a numeric array that might implicitly expand either

operands, do not combine a fixed size U dimension of the dlarray object with a variable-size
dimension of the numeric array.

• For unary operations such as max, min, and mean on a variable-size dlarray object, specify the
intended working dimension explicitly as a constant value. See “Automatic dimension restriction”.

See “dlarray Limitations for Code Generation”.

Generate code for dlnetwork objects that accept variable sequence
length inputs
In R2023a, you can generate code for dlnetwork objects that accept dlarray inputs with a
variable-size time (T) dimension. You use such dlarray objects to represent time series data of
variable sequence length.

For more information on how to create variable-size dlarray objects for code generation, see
“Generate code for variable-size dlarray data type” on page 1-15.

 Deep Learning with MATLAB Coder

1-15

Generate code for channel-wise convolution layer
In R2023a, you can generate C or C++ code that does not depend on third-party libraries for
channel-wise convolution (also known as depth-wise convolution) layer with
groupedConvolution2dLayer.

Generate code for Pooling layers with mean padding
In R2023a, you can generate generic C/C++ code in MATLAB for the following layer using 'mean'
for PaddingValue property:

• averagePooling2dLayer

Generate code that takes advantage of learnables compression in
bfloat16 format
In 2023a, you can perform learnables compression and generate C/C++ code for these layers in
Brain Floating Point format, bfloat16:

• fullyConnectedLayer
• gruLayer
• lstmLayer
• bilstmLayer
• lstmProjectedLayer

bfloat16 format keeps the same number range as 32-bit IEEE 754 single-precision floating-point
format. Compressing learnables from single-precision to bfloat16 reduces memory usage of deep
learning networks with accuracy variance. This enables deployment of larger networks to devices
with tight memory budget. For more information on bfloat16 format, see “Generate bfloat16 Code
for Deep Learning Networks”.

To enable learnables compression, set the LearnablesCompression property of the deep learning
configuration object coder.DeepLearningConfig to bfloat16.

dlcfg = coder.DeepLearningConfig(TargetLibrary = 'none');
dlcfg.LearnablesCompression = 'bfloat16';

Alternatively, you can set the new Learnables Compression property in the Deep Learning setting
tab of the MATLAB Coder App or the Configuration Parameters dialog box.

Deep learning configuration object name change
coder.DeepLearningConfigBase configuration object is now called
coder.DeepLearningCodeConfig. The behavior remains the same.

Quantized TensorFlow Lite Models: Configure predict function to
accept and return fp32 values
Quantized deep learning models use reduced-precision numbers, usually 8-bit integers (int8 or
uint8) instead of 32-bit floating point numbers (fp32), to represent the model's parameters. For

R2023a

1-16

inference computation with quantized TFLite models, the predict function accepts and returns 8-bit
integer values by default. In R2023a, when performing inference computation with quantized TFLite
models, you can configure the predict function to accept and return fp32 values and perform the
appropriate conversion at the function interface. To do this, use the predict function with the
additional name-value arguments QuantizeInputs and DequantizeOutputs.

Use newer version of TensorFlow Lite library in simulation and code
generation
In R2023a, you can perform inference with models created using TFLite version 2.8.0 in both
simulation and code generation. TFLite models are forward and backward compatible. So, if your
model was created using a different version of the library but contains layers that are available in
version 2.8.0, you can still simulate, generate code, and deploy your model. For more information, see
“Prerequisites for Deep Learning with TensorFlow Lite Models” (Deep Learning Toolbox).

Improved performance of generated generic C/C++ code
In R2023a, generated generic C/C++ code that does not depend on third-party libraries has improved
performance for networks containing the following layers:

• convolution2dLayer
• maxPooling2dLayer
• globalMaxPooling2dLayer
• averagePooling2dLayer
• globalAveragePooling2dLayer
• reluLayer
• leakyReluLayer
• clippedReluLayer
• additionLayer
• multiplicationLayer
• gruLayer
• lstmLayer
• bilstmLayer
• lstmProjectedLayer
• Layer that implements ONNX identity operator

nnet.onnx.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox)
• Layer that implements KERAS identity operator

nnet.keras.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox)

In addition, you are likely to have further performance improvement using the SIMD intrinsics. For
more information, see “Generate SIMD Code for MATLAB Functions”.

 Deep Learning with MATLAB Coder

1-17

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2023a

1-18

https://www.mathworks.com/support/bugreports/

R2022b

Version: 5.5

New Features

Bug Fixes

Compatibility Considerations

2

MATLAB Programming for Code Generation

Input Argument Validation: Generate code for arguments blocks in
MATLAB functions
In R2022b, you can generate code for arguments blocks that perform input argument validation in
your MATLAB function. Input argument validation declares specific restrictions on function input
arguments. Using argument validation, you can constrain the class, size, and other aspects of
function input values without writing code in the body of the function to perform these tests.

Code generation supports most features of arguments blocks, including size and class validation,
validation functions, and default values.

Code generation supports only varargin as a repeating argument. For varargin, size validation,
class validation, and validation functions are not supported for code generation.

Code generation does not support these features of arguments blocks:

• Repeating arguments other than varargin
• Name-value arguments
• Output argument validation

See Generate Code for arguments Block That Validates Input Arguments.

More MATLAB functions declared as auto-extrinsic
In R2022b, code generation automatically treats several additional MATLAB functions as extrinsic.
You do not need to explicitly specify that these functions are extrinsic by using the
coder.extrinsic construct.

These functions include:

• contour
• histogram
• imshow
• legend
• patch
• scatter
• stairs
• trimesh
• voronoi

For more information, see coder.extrinsic and Use MATLAB Engine to Execute a Function Call in
Generated Code.

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/matlab/ref/arguments.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/varargin.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/generate-code-for-arguments-block-that-validates-input-arguments.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/contour.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/matlab.graphics.chart.primitive.histogram.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/imshow.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/legend.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/patch.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/scatter.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/stairs.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/trimesh.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/voronoi.html
https://www.mathworks.com/help/releases/R2022b/coder/ref/coder.extrinsic.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/use-matlab-engine-to-execute-a-function-call-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/use-matlab-engine-to-execute-a-function-call-in-generated-code.html

Supported Functions

Code generation for more MATLAB functions
• allfinite
• anymissing
• anynan
• groupfilter
• grouptransform
• griddedInterpolant
• integral2
• integral3
• makima
• nearest
• ode15s
• pagetranspose
• pagectranspose
• shortestpath

Code generation for more toolbox functions
In R2022b, you can generate code for many additional toolbox functions and objects. For a list of all
functions and objects that are supported for code generation, see:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

 Supported Functions

2-3

https://www.mathworks.com/help/releases/R2022b/matlab/ref/allfinite.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/anymissing.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/anynan.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/double.groupfilter.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/double.grouptransform.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/griddedinterpolant.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/integral2.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/integral3.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/makima.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/graph.nearest.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/ode15s.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/pagetranspose.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/pagectranspose.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/graph.shortestpath.html
https://www.mathworks.com/help/releases/R2022b//referencelist.html?type=function
https://www.mathworks.com/help/releases/R2022b//referencelist.html?type=function

Code Generation Workflow

Improved representation for string type objects
Starting in R2022b, the representation of the string data type as coder type objects that you create
by using coder.typeof() and coder.newtype() is easier to use, more succinct, and excludes
internal state values. Pass a coder.StringType object as an input to the codegen -args option to
specify inputs to the generated code as a string.

The following code snippet shows the representation of a string input type that is created by using
the coder.typeof() function.

t = coder.typeof("Hello")

t =

coder.StringType
 1×1 string
 StringLength: 5
 VariableStringLength: false

To change the string length of the string type object, set the StringLength property to the required
value. To make the string length variable size, set VariableStringLength to true. Setting
StringLength to Inf automatically sets VariableStringLength to true. Consider the following
example:

t = coder.typeof("world");

% To specify t string length as upperbound at 10
t.StringLength = 10;
t.VariableStringLength = true;

% To specify t string length as variable-size without upper bound
t.StringLength = Inf;

Compatibility Considerations
In prior releases, to change the string length of the type object, the Value property must be set
accordingly. Similarly, to make the string length variable size, the Value property must be made
variable-size. The legacy interface is accessible in this release. Consider the following example:

t = coder.typeof("hello");

% To specify t string length as upperbound character vector
t.Properties.Value = coder.typeof('a',[1 10],[0 1]);

% To specify t string length as variable-size without upper bound
t.Properties.Value = coder.typeof('a',[1 Inf]);

Specify code generation target language by using coder.target
Starting in R2022b, code generator allows you to specialize the MATLAB code for specific target
language.

R2022b

2-4

You can use coder.target in the MATLAB code for which you are generating code as the following.

coder.target('CUDA');

Supported target languages for code generation are:

• C
• C++
• CUDA
• OpenCL
• SystemC
• SystemVerilog
• Verilog
• VHDL

Build generated code with CMake
To build code generated from MATLAB code, R2022b provides CMake toolchain definitions for:

• Microsoft® Visual C++® and MinGW® on Windows®, GCC on Linux®, and Xcode on Mac
computers, using Ninja and makefile generators.

• Microsoft Visual Studio® and Xcode project builds.

CMake and the associated CMakeLists.txt file are widely used for building C++ code and can be
directly leveraged by command-line tools and IDEs like Microsoft Visual Studio, Microsoft Visual
Studio Code, Xcode, and CLion.

If a supported toolchain is installed on your development computer, you can specify the
corresponding CMake toolchain definition during code generation. When you run codegen at the
command line or click the Generate Code button in the MATLAB Coder app, CMake:

1 Uses configuration (CMakeLists.txt) files to generate standard build files.
2 Runs the compiler and other build tools to create executable code.

For more information, see Configure CMake Build Process and https://www.mathworks.com/support/
requirements/supported-compilers.html.

Creation of custom CMake toolchain definitions
Using the target package, create custom CMake toolchain definitions for building code generated
from MATLAB code. You can:

• Specify CMake parameters, for example, Generator and Toolchain file.
• Associate the toolchain with operating systems of your development computers.
• Associate the toolchain with your target hardware.
• Add the toolchain definition to an internal database, which enables you to use the toolchain in

subsequent MATLAB sessions.

 Code Generation Workflow

2-5

https://www.mathworks.com/help/releases/R2022b/coder/ref/coder.target.html
https://www.mathworks.com/help/releases/R2022b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/configure-cmake-build-process.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/help/releases/R2022b/coder/ref/target-package.html

For more information, see Create Custom CMake Toolchain Definition and https://
www.mathworks.com/support/requirements/supported-compilers.html.

R2022b

2-6

https://www.mathworks.com/help/releases/R2022b/coder/ug/create-custom-cmake-toolchain-definition.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Performance

Improved cache efficiency of generated code containing loop
distribution, interchange, and reversal
In R2022b, the code generator can optimize the generated code by applying loop interchange and
distribution. These loop transformations increase the number of cache hits and improve the code
execution time. The optimizations apply to code generation targets for which the cache information is
available to the code generator. To increase the availability of cache information to the code
generation target, specify the target hardware information by using the
coder.HardwareImplementation object ProdHWDeviceType.

This code performs operations on the elements of the two input matrices of dimension [180x80] by
using for loops.

function out = MatLabFun(A, B)

sizeRow=90;
sizeCol=80;

for i = 2 : sizeRow
 for j = 2 : sizeCol
 B(i*2,j) = B((i*2)-1,j)+i*j;
 for k = 2 : sizeCol
 A(i*2,k) = A(i-1,k)+i+j;
 end
 end
end

out = [A;B];
end

In R2022a, the generated code contains one loop nest that evaluates the loop with iteration variable
B_tmp at the innermost position.

void MatLabFun(double A[14400], double B[14400], double out[28800])
{
 int A_tmp;
 int B_tmp;
 int B_tmp_tmp;
 int i;
 int j;
 for (i = 0; i < 89; i++) {
 B_tmp_tmp = (i + 2) << 1;
 for (j = 0; j < 79; j++) {
 B_tmp = B_tmp_tmp + 180 * (j + 1);
 B[B_tmp - 1] = B[B_tmp - 2] + (double)((i + 2) * (j + 2));
 for (B_tmp = 0; B_tmp < 79; B_tmp++) {
 A_tmp = 180 * (B_tmp + 1);
 A[(B_tmp_tmp + A_tmp) - 1] =
 (A[i + A_tmp] + ((double)i + 2.0)) + ((double)j + 2.0);
 }
 }
 }
 for (B_tmp = 0; B_tmp < 80; B_tmp++) {

 Performance

2-7

https://www.mathworks.com/help/releases/R2022b/coder/ref/coder.hardwareimplementation.html

 for (A_tmp = 0; A_tmp < 180; A_tmp++) {
 i = A_tmp + 180 * B_tmp;
 B_tmp_tmp = A_tmp + 360 * B_tmp;
 out[B_tmp_tmp] = A[i];
 out[B_tmp_tmp + 180] = B[i];
 }
 }
}

In R2022b, the loop in the generated code is distributed to two loop nests. The loop nests are
interchanged to evaluate the loop with iteration variable j at the innermost position.

void MatLabFun(double A[14400], double B[14400], double out[28800])
{
 int A_tmp;
 int B_tmp;
 int i;
 int j;
 for (j = 0; j < 79; j++) {
 for (i = 0; i < 89; i++) {
 B_tmp = ((i + 2) << 1) + 180 * (j + 1);
 B[B_tmp - 1] = B[B_tmp - 2] + (double)((i + 2) * (j + 2));
 }
 }
 for (B_tmp = 0; B_tmp < 79; B_tmp++) {
 A_tmp = 180 * (B_tmp + 1);
 for (i = 0; i < 89; i++) {
 for (j = 0; j < 79; j++) {
 A[(((i + 2) << 1) + A_tmp) - 1] =
 (A[i + A_tmp] + ((double)i + 2.0)) + ((double)j + 2.0);
 }
 }
 }
 for (B_tmp = 0; B_tmp < 80; B_tmp++) {
 for (A_tmp = 0; A_tmp < 180; A_tmp++) {
 j = A_tmp + 180 * B_tmp;
 i = A_tmp + 360 * B_tmp;
 out[i] = A[j];
 out[i + 180] = B[j];
 }
 }
}

This interchange improves the locality of reference for the loop nest and improves cache
performance.

Improved performance of generated MEX files
In R2022b, performance improvements to generated MEX files include:

• Optimization of the run-time library that is used by the generated MEX files.
• Reduction of the initialization overhead of the generated MEX file.

SIMD code for bitwise and shift operations
In R2022b, you can generate SIMD code for bitwise operations and shift operations. When you select
an instruction set by using the Leverage target hardware instruction set extensions parameter,

R2022b

2-8

the generated code includes the associated instructions for these bitwise operations and shift
operations:

• bitand
• bitor
• bitxor
• bitshift

For more information, see Generate SIMD Code for MATLAB Functions.

 Performance

2-9

https://www.mathworks.com/help/releases/R2022b/matlab/ref/bitand.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/bitor.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/bitxor.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/bitshift.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/generate-simd-code-for-matlab-blocks.html

Deep Learning with MATLAB Coder

Deep Learning: Analyze and find issues in the network for code
generation
You can analyze code generation compatibility of deep learning networks by using the
analyzeNetworkForCodegen function. Use the network code generation analyzer to validate a
SeriesNetwork, DAGNetwork, and dlnetwork for non-library and library targets and detect
problems before code generation. Supported library targets include MKL-DNN, ARM Compute, and
CMSIS-NN. Problems that analyzeNetworkForCodegen detects include unsupported layers for
code generation, network issues, built-in layer specific issues, and issues with custom layers.

The analyzeNetworkForCodegen function requires the MATLAB Coder Interface for Deep
Learning and GPU Coder™ Interface for Deep Learning support packages. To download and install
support package, use the Add-On Explorer. You can also download the support packages from
MathWorks GPU Coder Team and MathWorks MATLAB Coder Team. For more information, see
Analyze Network for Code Generation.

TensorFlow Lite: Generate C++ code for pretrained models and deploy
on Windows platforms
Use the loadTFLiteModel (Deep Learning Toolbox) function to load a pretrained TensorFlow™ Lite
model into a TFLiteModel (Deep Learning Toolbox) object. Use this object with the predict (Deep
Learning Toolbox) function in your MATLAB code to perform inference in MATLAB execution, code
generation, or inside MATLAB Function blocks in Simulink® models.

To use this functionality, you must install the Deep Learning Toolbox™ Interface for TensorFlow Lite.
For more information, see Prerequisites for Deep Learning with TensorFlow Lite Models (Deep
Learning Toolbox). For examples, see:

• Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and
Raspberry Pi (Deep Learning Toolbox)

• Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi (Deep Learning
Toolbox)

Generate code for dlnetwork objects that do not have input layers
In R2022b, you can generate code for dlnetwork (Deep Learning Toolbox) objects that do not
contain input layers. This enables you to generate code for dlnetwork objects that do not represent
entire models but are used as intermediate building blocks that you connect together to create
complex networks. The generated code can take advantage of either the Intel MKL-DNN or the ARM®

Compute library. You can also generate generic C/C++ code that does not depend on any third-party
libraries.

Deep Learning Arrays: Generate code for more functions that use
dlarray
In R2022b, you can generate code for additional MATLAB functions that use dlarray (Deep
Learning Toolbox) inputs. You can now generate code for these functions:

R2022b

2-10

https://www.mathworks.com/help/releases/R2022b/coder/ref/analyzenetworkforcodegen.html
https://www.mathworks.com/matlabcentral/profile/authors/13352935
https://www.mathworks.com/matlabcentral/profile/authors/10249539
https://www.mathworks.com/help/releases/R2022b/coder/ug/analyze-network-for-code-generation.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/loadtflitemodel.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/tflitemodel.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/tflitemodel.predict.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ug/prerequisites-for-deep-learning-with-tensorflow-lite-models.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ug/deploy-super-resolution-application-that-uses-tflite-model-on-host-and-raspberry-pi.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ug/deploy-super-resolution-application-that-uses-tflite-model-on-host-and-raspberry-pi.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ug/generate-code-for-tensorflow-lite-model-and-deploy-on-raspberry-pi.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/dlarray.html

• Size Manipulation functions — Use repelem to repeat copies of array elements.
• Size Manipulation functions — Use repmat to repeat copies of array.
• Error function — Use erf to compute the error function for each element of input.

To learn more about generating code from MATLAB functions when using dlarray (Deep Learning
Toolbox), see Code Generation for dlarray.

Deep Learning Networks: Generate code for additional networks
In R2022b, you can generate generic C/C++ code for these additional networks:

• yolov3ObjectDetector (Computer Vision Toolbox)– YOLO v3 object detector. This feature
requires the functions in the Computer Vision Toolbox™ Model for YOLO v3 Object Detection
support package.

• yolov4ObjectDetector (Computer Vision Toolbox) – YOLO v4 object detector. This feature
requires the functions in the Computer Vision Toolbox Model for YOLO v4 Object Detection
support package.

• ssdObjectDetector (Computer Vision Toolbox) – SSD-based object detector.

Deep Learning: Generate code for additional layers
In R2022b, you can generate C or C++ code that does not depend on third-party libraries for these
additional layers:

• globalMaxPooling2dLayer (Deep Learning Toolbox)
• globalAveragePooling2dLayer (Deep Learning Toolbox)
• averagePooling2dLayer (Deep Learning Toolbox)
• depthConcatenationLayer (Deep Learning Toolbox)
• flattenLayer (Deep Learning Toolbox)
• focalLossLayer (Computer Vision Toolbox)
• anchorBoxLayer (Computer Vision Toolbox)
• rcnnBoxRegressionLayer (Computer Vision Toolbox)
• ssdMergeLayer (Computer Vision Toolbox)

See Networks and Layers Supported for Code Generation.

In addition, Spatio-Temporal data propagation support is added for generic C/C++ code generation.
You can now pass 2D image sequences with both spatial and time dimensions to these layers and
generate generic C/C++ code:

• convolution2dLayer (Deep Learning Toolbox)
• maxPooling2dLayer (Deep Learning Toolbox)
• averagePooling2dLayer (Deep Learning Toolbox)
• globalMaxPooling2dLayer (Deep Learning Toolbox)
• globalAveragePooling2dLayer (Deep Learning Toolbox)

 Deep Learning with MATLAB Coder

2-11

https://www.mathworks.com/help/releases/R2022b/matlab/ref/repelem.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/repmat.html
https://www.mathworks.com/help/releases/R2022b/matlab/ref/erf.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/code-generation-dlarrays.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/yolov3objectdetector.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/yolov4objectdetector.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/ssdobjectdetector.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.globalmaxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.globalaveragepooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.averagepooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.depthconcatenationlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.flattenlayer.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/nnet.cnn.layer.focallosslayer.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/nnet.cnn.layer.anchorboxlayer.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/nnet.cnn.layer.rcnnboxregressionlayer.html
https://www.mathworks.com/help/releases/R2022b/vision/ref/nnet.cnn.layer.ssdmergelayer.html
https://www.mathworks.com/help/releases/R2022b/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.maxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.averagepooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.globalmaxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.globalaveragepooling2dlayer.html

Improved performance of generated generic C/C++ code
In R2022b, the generated generic C/C++ code (that does not depend on third-party libraries) for the
following layers has improved performance:

• convolution2dLayer (Deep Learning Toolbox)
• fullyConnectedLayer (Deep Learning Toolbox)

In addition, generated code for certain network that contains convolutional layers followed by ReLU
or Leaky ReLU layer is likely to have improved performance.

Functionality being removed or changed
coder.getDeepLearningLayers function is not recommended
Still runs

coder.getDeepLearningLayers is not recommended. Use analyzeNetworkForCodegen
instead.

For more information, see analyzeNetworkForCodegen.

Code generation behavior change for dlarray inputs and outputs
Behavior change

In R2022b, the generated code creates structures for the dlarray inputs and outputs of entry-point
functions. Data is a public field that you can directly access it.

In previous releases, the generated code uses class to represent the dlarray inputs and outputs of
entry-point functions. In these releases, you use the initializing function init to access the Data
field. This example shows the difference in the generated code between the two releases:

MATLAB Code R2022a Generated Code R2022b Generated Code
% entry-point function
function out = foo(a)
 out = dims(a);
end

% code generation
cfg = coder.config('dll');
cfg.TargetLang = 'C++';
codegen -config cfg foo -args dlarray(ones(5,4), 'SC')

// File: dlarray.h (generated)
namespace coder {
class FOO_DLL_EXPORT dlarray {
public:
 void init(const double b_Data[20]);
 dlarray();
 ~dlarray();

private:
 double Data[20];
};
}

// File: main.cpp (generated)
static void argInit_dlarray(coder::dlarray *result)
{
 double dv[20];
 argInit_5x4_real_T(dv);
 result->init(dv);
}

// File: foo_types.h (generated)
namespace coder {
struct dlarray {
 double Data[20];
};
}

// File: main.cpp (generated)
static void argInit_dlarray(coder::dlarray *result)
{

 argInit_5x4_real_T(result->Data);
}

R2022b

2-12

https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2022b/coder/ref/analyzenetworkforcodegen.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

2-13

https://www.mathworks.com/support/bugreports/

R2022a

Version: 5.4

New Features

Bug Fixes

Compatibility Considerations

3

Supported Functions

Code generation for more MATLAB functions
• integral
• interpft
• ldl
• mustBeFloat
• mustBeNonmissing
• mustBeScalarOrEmpty
• mustBeText
• mustBeTextScalar
• mustBeVector
• groupcounts
• groupsummary

Code generation for more toolbox functions
In R2022a, you can generate code for many additional toolbox functions and objects. For a list of all
functions and objects that are supported for code generation, see:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/matlab/ref/integral.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/interpft.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/ldl.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbefloat.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbenonmissing.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbescalarorempty.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbetext.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbetextscalar.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mustbevector.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/double.groupcounts.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/double.groupsummary.html
https://www.mathworks.com/help/releases/R2022a//referencelist.html?type=function
https://www.mathworks.com/help/releases/R2022a//referencelist.html?type=function

Generated Code Improvements

Generate C++11 enumeration classes for MATLAB enumerations
In R2022a, when you generate C++11 MEX or standalone code for your MATLAB enumerations, the
code generator produces C++11 enumeration classes by default. Using enumeration classes makes
the generated C++11 code more idiomatic. They also improve code quality because:

• The enumerators are contained in the scope of the enumeration and thus avoid name clashes.
• The enumerators do not implicitly convert to the integer type that might cause unexpected

behavior.

To instruct the code generator to produce ordinary C enumeration for a particular MATLAB
enumeration class, include the static method generateEnumClass that returns false in the
implementation of that MATLAB enumeration class. See the example below.

MATLAB Code R2021b Generated Code R2022a Generated Code
classdef MyEnumClass < int32
 enumeration
 Red(0),
 Blue(1),
 Green(2)
 end
end

classdef MyEnumClass16 < int16
 enumeration
 Orange(0),
 Yellow(1),
 Pink(2)
 end

 % particular enum opting out
 methods(Static)
 function y = generateEnumClass()
 y = false;
 end
 end
end

function [out1, out2] = xEnumIsCppEnumClass
out1 = MyEnumClass.Green;
out2 = MyEnumClass16.Pink;
end

enum MyEnumClass : int
{
 Red = 0, // Default value
 Blue,
 Green
};

enum MyEnumClass16 : short
{
 Orange = 0, // Default value
 Yellow,
 Pink
};

void xEnumIsCppEnumClass(MyEnumClass *out1,
 MyEnumClass16 *out2)
{
 *out1 = Green;
 *out2 = Pink;
}

enum class MyEnumClass : int
{
 Red = 0, // Default value
 Blue,
 Green
};

enum MyEnumClass16 : short
{
 Orange = 0, // Default value
 Yellow,
 Pink
};

void xEnumIsCppEnumClass(MyEnumClass *out1,
 MyEnumClass16 *out2)
{
 *out1 = MyEnumClass::Green;
 *out2 = Pink;
}

See Code Generation for Enumerations and Customize Enumerated Types in Generated Code.

Compatibility Considerations
You can change the default behavior of the code generator to produce ordinary C enumerations for all
MATLAB enumerations in your code, similar to previous releases. Do one of the following:

• In the code generation configuration object, set the CppGenerateEnumClass property to false.

 Generated Code Improvements

3-3

https://www.mathworks.com/help/releases/R2022a/coder/ug/code-generation-for-enumerations.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/customize-enumerated-types-based-on-int32.html

• In the MATLAB Coder app, in the Generate step, on the Code Appearance tab, clear the
Generate C++ enum class from MATLAB enumeration check box.

Improvement to generated C++ code that uses externally specified
enumerations
The code generator allows you to provide your own C++ implementation of a specific MATLAB
enumeration in a header file. In R2022a, if you place such a MATLAB enumeration myEnum inside the
package pkg, code generation preserves the name of this enumeration and places it inside the
namespace pkg in the generated C++ code. Therefore, in the header file that you provide, you must
define this enumeration inside the namespace pkg.

In previous releases, the generated code named the enumeration as pkg_enum and did not place it
inside a namespace. With this new behavior, the C++ code generated for externally specified
enumerations matches with the C++ code generated for enumerations in other situations. In
addition, the current behavior produces code that is better organized and easier to read and use.

MATLAB Code R2021b Generated C++11
Code

R2022a Generated C++11
Code

% File: +pkg1\MyEnum.m
classdef(Enumeration) MyEnum < int32
 enumeration
 Red(0),
 Blue(1),
 Green(2)
 end
 methods(Static)
 function y = getHeaderFile()
 y = 'Header.h';
 end
 end
end

% File: foo.m
function out = foo
 out = pkg1.MyEnum.Red;
end

// File: Header.h (you provide)
#pragma once
typedef enum pkg1_MyImportedEnum {
 Red = 0,
 Blue = 1,
 Green = 2
} MyImportedEnum ;

// File: foo.cpp (generated)
pkg1_MyEnum foo()
{
 return Red;
}

// File: Header.h (you provide)
#pragma once
namespace pkg1 {
enum class MyEnum : int
{
 Red = 0, // Default value
 Blue,
 Green
};
}

// File: foo.cpp (generated)
pkg1::MyEnum foo()
{
 return pkg1::MyEnum::Red;
}

See Customize Enumerated Types in Generated Code and Code Generation for Enumerations.

Compatibility Considerations
In previous releases, the generated code did not place an externally specified enumeration in a
namespace. Instead, the name of the MATLAB package was prefixed to the name of the enumeration
in the generated code. As a result, you had to implement the C++ enumeration in the header file
differently compared to the current release, as illustrated in the above example. To use your legacy
header files with the code generated in R2022a, modify them based on this example.

Additional improvements to generated C++11 code
In R2022a, in most situations, the code generator produces more concise and idiomatic C++11 code
that uses these language constructs:

R2022a

3-4

https://www.mathworks.com/help/releases/R2022a/coder/ug/customize-enumerated-types-based-on-int32.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/code-generation-for-enumerations.html

• Empty constructors and destructors are denoted by using the = default syntax.
• Type aliases are created by using the using keyword instead of the typedef keyword. For

declaring aliases for anonymous structures, the generated code now uses the struct keyword
instead of typedef.

Examples:

R2021b Generated Code R2022a Generated Code
class foo {
 foo();
}
foo::foo() { }

class foo {
 foo() = default;
}

Or

class foo {
 foo();
}
foo::foo() = default;

typedef int32 myInt;
typedef aStruct myStruct1;
typedef struct { ... } myStruct2;

using myInt = int32;
using myStruct1 = aStruct;
struct myStruct2 { ... };

 Generated Code Improvements

3-5

Code Generation Workflow

New Code Generation Readiness Tool: View more information and
navigate through readiness results more easily
In R2022a, the Code Generation Readiness Tool has a new user interface, more information,
additional functionality, and improved navigation. In addition, you can now use the Code Generation
Readiness Tool in MATLAB Online™.

In addition to the existing functionalities, you can now:

• View your MATLAB code inside the Code Generation Readiness Tool. When you select an issue,
the part of your MATLAB code that caused this issue gets highlighted.

• Group the readiness results either by issue or by file.
• Select the language that the code generation readiness analysis uses.
• Refresh the code generation readiness analysis if you updated your MATLAB code.
• Export the analysis report either as plain text file or as a coder.ScreenerInfo object in the

base workspace.

See:

R2022a

3-6

• Check Code by Using the Code Generation Readiness Tool
• coder.screener and coder.ScreenerInfo Properties

coder.ScreenerInfo object: Access code generation readiness
information programmatically
In R2022a, you can export the code generation readiness information about your MATLAB code to a
variable in your base workspace. This variable contains a coder.ScreenerInfo object whose
properties contain information about:

• MATLAB files analyzed by the Code Generation Readiness Tool
• Code generation readiness messages
• Calls to functions not supported for code generation

To export code generation readiness information about your the files foo1.m, foo2.m, and
foo3.mlx to the variable info in your base workspace, execute this function call:

info = coder.screener('foo1.m','foo2.m','foo3.mlx')

You can also export the entire report to a MATLAB string by executing the object function
textReport:

reportString = textReport(info)

See:

• Reference pages: coder.ScreenerInfo Properties and coder.screener
• Example: Access Code Generation Readiness Results Programmatically

MATLAB Coder Interface for Visual Studio Code Debugging
If you install the support package MATLAB Coder Interface for Visual Studio Code Debugging, you
can use Visual Studio Code as the graphical user interface for these debuggers:

• MinGW GDB on Windows
• GDB on Linux
• LLDB on macOS

For information about installing the support package, in MATLAB Central™ File Exchange, search for
MATLAB Coder Interface for Visual Studio Code Debugging.

For information about debugger support, see Debug Generated Code During SIL Execution
(Embedded Coder).

Generated MEX: UTF-8 system encoding on Windows platform
In R2022a, MATLAB uses UTF-8 as its system encoding on Windows platform. As a result, system
calls made from within a generated MEX function now accept and return UTF-8 encoded strings. By
contrast, the code generated by MATLAB Coder encodes text data by using the encoding specified by
the Windows locale. So, if your MATLAB entry-point function uses coder.ceval to call external C/C
++ functions that assume a different system encoding, then the generated MEX function might

 Code Generation Workflow

3-7

https://www.mathworks.com/help/releases/R2022a/coder/ug/fix-issues-detected-by-the-code-generation-readiness-tool.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.screener.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.screenerinfo-properties.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.screenerinfo-properties.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.screener.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.screener.html#mw_c7fc3bad-2374-43b7-badf-1b7034d72613
https://www.mathworks.com/matlabcentral/fileexchange
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/code-debugging-during-sil-execution.html
https://www.mathworks.com/help/releases/R2022a/coder/ref/coder.ceval.html

produce garbled text. If this happens, you must update the external C/C++ functions to handle this
situation.

See “MEX Functions: UTF-8 system encoding on Windows platforms”.

R2022a

3-8

Performance

SIMD code for reduction operations
In R2022a, you can generate SIMD code for reduction operations by using the new parameter
Optimize reductions. The generated code uses the reduction operations from the instruction set
that you specify by using the Instruction set extensions parameter.

You can generate SIMD code for these operations:

• Sum
• Product
• Minimum
• Maximum
• Handwritten loops for the previous operations

For more information, see Generate SIMD Code for MATLAB Functions.

Parallelization of for-loops performing reduction operations
In R2022a, you can parallelize for-loops performing reduction operations by using the configuration
parameter Optimize reductions.

During a reduction operation, the current iteration value depends on the previous iteration value of
the same variable in the for-loop. For example, consider the MATLAB function addition, which
computes the sum of first n numbers.

function y = addition(n)
 y = 0;
 for i = 1:n
 y = y + i; % for-loop performing reduction operation
 end
end

The configuration property parallelizes only arithmetic reduction operations, such as addition (+),
subtraction (-), and product (*), in a for-loop.

To enable automatic parallelization of reduction operations, use either of these settings:

• Set the EnableAutoParallelization property and OptimizeReductions property to true.

cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.OptimizeReductions = true;

• Open the MATLAB Coder app. On the Speed tab, select the Enable automatic parallelization
option, and then select Optimize reductions option.

For more information, see Classification of Variables in parfor-Loops and Automatically Parallelize
for Loops in Generated Code

 Performance

3-9

https://www.mathworks.com/help/releases/R2022a/coder/ug/generate-simd-code-for-matlab-blocks.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/classification-of-variables-in-parfor-loops.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/automatically-parallelize-for-loops.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/automatically-parallelize-for-loops.html

Minimized variable scope for C99 (ISO) code generation
In R2022a, variables and functions are declared closer to their usage in the generated code when the
target language is specified as C99 (ISO) to improve code readability.

This table shows the declaration of variables in R2021b generated code and R2022a generated code
with the target language as C99 (ISO). In the R2022a generated code, the scope of array zee is
minimized because it is placed inside the if block.

MATLAB Function R2021b Generated Code R2022a Generated Code
function y = C99example(n) %#codegen
 y = zeros(1,n);
 for i = 1:n
 y(i) = 42;
 end
end

double C99example(int n)
{
 double zee[8];
 double u;
 int i;
 if (n < 40) {
 for (i = 0; i < 8; i++) {
 zee[i] = 1.0;
 }
 for (i = 0; i < n; i++) {
 zee[n - 1] += zee[0];
 }
 u = zee[0] + zee[n - 1];
 } else {
 u = 3.0;
 }
 return u;
}

double C99example(int n)
{
 double u;
 int i;
 if (n < 40) {
 double zee[8];
 for (i = 0; i < 8; i++) {
 zee[i] = 1.0;
 }
 for (i = 0; i < n; i++) {
 zee[n - 1] += zee[0];
 }
 u = zee[0] + zee[n - 1];
 } else {
 u = 3.0;
 }
 return u;
}

R2022a

3-10

Deep Learning with MATLAB Coder

TensorFlow Lite: Generate C++ code for pretrained models and deploy
on Linux platforms
In R2022a, you can use the loadTFLiteModel (Deep Learning Toolbox) function to load a pretrained
TensorFlow Lite model into a TFLiteModel (Deep Learning Toolbox) object. Use this object with the
predict (Deep Learning Toolbox) function to perform inference with a pretrained TensorFlow Lite
model. You can generate code for this functionality and deploy on Linux platforms either on your
MATLAB host computer or on ARM processors.

To use this functionality, you must install the Deep Learning Toolbox Interface for TensorFlow Lite.
For more information, see Prerequisites for Deep Learning with TensorFlow Lite Models (Deep
Learning Toolbox). For an example, see Generate Code for TensorFlow Lite Model and Deploy on
Raspberry Pi (Deep Learning Toolbox).

CMSIS-NN Library: Generate code for quantized deep learning layers
and deploy on ARM Cortex-M targets
You can generate C static library code for networks containing these layers that uses the CMSIS-NN
library and performs inference computations in 8-bit integers:

• Fully connected layer (fullyConnectedLayer (Deep Learning Toolbox)).

Your deep learning network can also contain the following layers. The generated code performs
computations for these layers in 32-bit floating point type.

• Long short-term memory layer (lstmLayer (Deep Learning Toolbox))
• Softmax layer (softmaxLayer (Deep Learning Toolbox)).
• Input and output layers

C code generation for such quantized deep learning networks supports SeriesNetwork (Deep
Learning Toolbox) objects and DAGNetwork (Deep Learning Toolbox) objects that can be converted to
SeriesNetwork objects. The generated code takes advantage of the CMSIS-NN library version 5.7.0
and can be integrated into your project as a static library that you can deploy to a variety of ARM
Cortex-M CPU platforms. See:

• Help topic: Code Generation for Quantized Deep Learning Networks
• Example: Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target

Generate generic C/C++ code for dlnetwork workflows
Starting in R2022a, you can generate C or C++ code for the predict function of a dlnetwork
(Deep Learning Toolbox) object inside an entry-point function. You can also generate code for the
dlarray (Deep Learning Toolbox) data type that you use for inference with dlnetwork. The
generated code does not depend on any third-party libraries.

Code generation support includes:

• Construction of formatted and unformatted dlarray

 Deep Learning with MATLAB Coder

3-11

https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/loadtflitemodel.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/tflitemodel.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/tflitemodel.predict.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/_mw_ebedddaa-3331-4648-9b72-974745cdb9f5.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/generate-code-for-tensorflow-lite-model-and-deploy-on-raspberry-pi.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/generate-code-for-tensorflow-lite-model-and-deploy-on-raspberry-pi.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.softmaxlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/seriesnetwork.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dagnetwork.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/code-generation-for-quantized-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/generate-code-for-quantized-lstm-network-and-deploy-on-cortex-m-target.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.html

• Passing dlarray to entry-point functions and returning dlarray from entry-point functions
• Invoking a subset of functions on dlarray objects, including the object functions softmax (Deep

Learning Toolbox), sigmoid (Deep Learning Toolbox), and fullyconnect (Deep Learning
Toolbox)

• Passing formatted dlarray to the dlnetwork predict function inside an entry-point function

For more information, see Code Generation for dlarray.

Code generation from MATLAB for dlnetwork objects that contain
image sequences
Starting in R2022a, you can generate code for a dlnetwork (Deep Learning Toolbox) object that has
image sequence inputs. Code generation includes:

• A dlarray (Deep Learning Toolbox) input containing image sequences that have 'SSCT' or
'SSCBT' data formats.

• Multi-input dlnetwork with heterogeneous input layers.

For more information, see dlnetwork (Deep Learning Toolbox).

Deep Learning Arrays: Generate code for more functions that use
dlarray
In R2022a, you can generate code for additional MATLAB functions that use dlarray (Deep Learning
Toolbox) inputs. Code generation includes:

• Binary math operations — Use power to perform binary element-wise power (.^) operation.
• Other math operations — Perform matrix multiplication by using mtimes. Use pagemtimes to

perform page-wise matrix multiplication.

Generate C++ code that performs inference computations in 8-bit
integers for more layers
In R2022a, you can generate C++ code for these layers that uses the ARM Compute Library and
performs inference computations in 8-bit integers:

• averagePooling2dLayer (Deep Learning Toolbox)
• fullyConnectedLayer (Deep Learning Toolbox)

See Code Generation for Quantized Deep Learning Networks.

Deep Learning Networks: Generate code for additional networks
Code generation by using the Intel MKL-DNN library supports these additional networks:

• yolov3ObjectDetector (Computer Vision Toolbox) – YOLO v3 object detector. This feature
requires the functions in the Computer Vision Toolbox Model for YOLO v3 Object Detection
support package.

R2022a

3-12

https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.softmax.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.sigmoid.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.fullyconnect.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/code-generation-dlarrays.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/power.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/mtimes.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/pagemtimes.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.averagepooling2dlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/code-generation-for-quantized-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2022a/vision/ref/yolov3objectdetector.html

• yolov4ObjectDetector (Computer Vision Toolbox) – YOLO v4 object detector. This feature
requires the functions in the Computer Vision Toolbox Model for YOLO v4 Object Detection
support package.

• pointPillarsObjectDetector – PointPillars network to detect objects in lidar point clouds.
This feature requires the Lidar Toolbox™.

Code generation by using the ARM Compute library supports these additional networks:

• yolov3ObjectDetector (Computer Vision Toolbox) – YOLO v3 object detector. This feature
requires the functions in the Computer Vision Toolbox Model for YOLO v3 Object Detection
support package.

• yolov4ObjectDetector (Computer Vision Toolbox) – YOLO v4 object detector. This feature
requires the functions in the Computer Vision Toolbox Model for YOLO v4 Object Detection
support package.

• pointPillarsObjectDetector – PointPillars network to detect objects in lidar point clouds.
This feature requires the Lidar Toolbox.

Deep Learning: Generate code for additional layers
In R2022a, C++ code generation that uses the Intel MKL-DNN library supports these additional
layers:

• nnet.keras.layer.ClipLayer
• nnet.keras.layer.PreluLayer
• nnet.keras.layer.TimeDistributedFlattenCStyleLayer
• nnet.onnx.layer.ClipLayer
• nnet.onnx.layer.GlobalAveragePooling2dLayer
• nnet.onnx.layer.PreluLayer
• nnet.onnx.layer.SigmoidLayer
• nnet.onnx.layer.TanhLayer

In R2022a, C++ code generation with the ARM Compute library supports these additional layers:

• nnet.keras.layer.ClipLayer
• nnet.keras.layer.PreluLayer
• nnet.keras.layer.TimeDistributedFlattenCStyleLayer
• nnet.onnx.layer.ClipLayer
• nnet.onnx.layer.GlobalAveragePooling2dLayer
• nnet.onnx.layer.PreluLayer
• nnet.onnx.layer.SigmoidLayer
• nnet.onnx.layer.TanhLayer

In R2022a, you can generate C or C++ code that does not depend on any third-party libraries for
these additional layers:

• batchNormalizationLayer (Deep Learning Toolbox)
• nnet.keras.layer.ClipLayer

 Deep Learning with MATLAB Coder

3-13

https://www.mathworks.com/help/releases/R2022a/vision/ref/yolov4objectdetector.html
https://www.mathworks.com/help/releases/R2022a/vision/ref/yolov3objectdetector.html
https://www.mathworks.com/help/releases/R2022a/vision/ref/yolov4objectdetector.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html

• nnet.keras.layer.PreluLayer
• nnet.keras.layer.TimeDistributedFlattenCStyleLayer
• nnet.onnx.layer.ClipLayer
• nnet.onnx.layer.GlobalAveragePooling2dLayer
• nnet.onnx.layer.PreluLayer
• nnet.onnx.layer.SigmoidLayer
• nnet.onnx.layer.TanhLayer

See Networks and Layers Supported for Code Generation.

Improved performance of generated generic C/C++ code
In R2022a, the generated generic C/C++ code (that does not depend on third-party libraries) for the
following layers has improved performance:

• bilstmLayer (Deep Learning Toolbox)
• convolution2dLayer (Deep Learning Toolbox)
• fullyConnectedLayer (Deep Learning Toolbox)
• gruLayer (Deep Learning Toolbox)
• lstmLayer (Deep Learning Toolbox)

In addition, you can generate generic C/C++ code that uses SIMD intrinsics for these layers. Use of
SIMD intrinsics is likely to further improve the performance the generated code. To generate code
that uses SIMD intrinsics, do one of the following:

• Specify a code replacement library that supports SIMD, for example, GCC ARM Cortex-A. To
specify a code replacement library, set the code generation configuration parameter
CodeReplacementLibrary. Alternatively, in the MATLAB Coder app, in the project build
settings, on the Custom Code tab, set the Code replacement library parameter.

• Specify SIMD instruction set for the target hardware by setting the code generation configuration
parameter InstructionSetExtensions. Alternatively, in the MATLAB Coder app, in the project
build settings, on the Speed tab, set the Leverage target hardware instruction set extensions
parameter.

R2022a

3-14

https://www.mathworks.com/help/releases/R2022a/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.grulayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

3-15

https://www.mathworks.com/support/bugreports/

R2021b

Version: 5.3

New Features

Bug Fixes

Compatibility Considerations

4

MATLAB Programming for Code Generation

Implicit Expansion: Generate code for element-wise operations and
functions with automatic expansion of operand dimensions
In R2021b, you can generate code for MATLAB operators and functions that apply implicit expansion.
These binary element-wise operators and functions implicitly expand their inputs to be the same size,
if the input arrays have compatible sizes. Two arrays have compatible sizes if, for every dimension,
the dimension sizes of the arrays are either the same or one of them is one. See Compatible Array
Sizes for Basic Operations.

For example, you can calculate the mean of each column in a matrix A, and then subtract the vector
of mean values from each column by using A - mean(A). The generated code for this operation is
shown below.

MATLAB Code Generated Code with Implicit Expansion
function out = meanSubtraction(A)
out = A - mean(A);
end

a = coder.typeof(1,[Inf Inf])
codegen -config:lib -report meanSubtraction -args {a}

static void binary_expand_op(emxArray_real_T *out, const emxArray_real_T *A,
 const emxArray_real_T *y)
{
 int aux_0_1;

 for (i = 0; i < loop_ub; i++) {
 b_loop_ub = A->size[0];
 for (i1 = 0; i1 < b_loop_ub; i1++) {
 out->data[i1 + out->size[0] * i] =
 A->data[i1 + A->size[0] * aux_0_1] - y->data[aux_1_1] / (double)b_A;
 }
 aux_1_1 += stride_1_1;
 aux_0_1 += stride_0_1;
 }
}
void meanSubtraction(const emxArray_real_T *A, emxArray_real_T *out)
{
 emxArray_real_T *y;

 if (A->size[1] == y->size[1]) {

 for (lastBlockLength = 0; lastBlockLength < nblocks; lastBlockLength++) {
 out->data[lastBlockLength + out->size[0] * xpageoffset] =
 A->data[lastBlockLength + A->size[0] * xpageoffset] -
 y->data[xpageoffset] / (double)A->size[0];
 }
 }
 } else {
 binary_expand_op(out, A, y);
 }
 emxFree_real_T(&y);
}

If your MATLAB code includes operators or functions that apply implicit expansion, the generated
code includes a secondary function that performs implicit expansion, in this case
binary_expand_op. The function generated for the main operation (meanSubtraction) calls the
secondary operation. See Generate Code With Implicit Expansion Enabled.

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html
https://www.mathworks.com/help/releases/R2021b/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-code-with-implicit-expansion-enabled.html

Compatibility Considerations
In R2021b, by default, code generation supports implicit expansion. The code generator introduces
modifications in the generated code for implicit expansion. These modifications might cause the code
generated for functions that support implicit expansion to look and perform differently as compared
to the code from previous releases. New errors might be generated due to mismatch of output sizes
or types. For more information on how to control this feature, see “Code generation behavior change
due to implicit expansion” on page 4-3.

This feature does not change the generated code for operations or functions applied on constant or
fixed-size inputs.

Generate code for MATLAB code that uses class aliases
In R2021b, you can generate C/C++ code for MATLAB code that uses class aliases. When you need to
change a MATLAB class name, you can create an alias to preserve compatibility with the code written
before the name change. Once defined, you can use the aliases anywhere you use the class name.

See “Class Aliasing: Create aliases for renamed classes to maintain backward compatibility”.

Access name of currently running MATLAB function during debugging
by using coder.mfunctionname
In R2021b, you can access the name of the currently running MATLAB function either in the
generated code or in MATLAB execution by inserting a call to coder.mfunctionname in the body of
your MATLAB function. For example, when debugging either your MATLAB code or the generated
code, you can use this functionality to print the name of the currently running function.

Functionality being removed or changed
Code generation behavior change due to implicit expansion

In R2021b, the code generated for element-wise binary functions and operations that support implicit
expansion might appear and perform differently as compared to the code from previous releases. The
code generator introduces modifications in the generated code to perform implicit expansion. The
changes in the generated code might result in excess code to expand the operands. In addition, the
expansion of the operands might affect the performance of the generated code.

Implicit expansion might change the size of the outputs from the supported operators and functions
causing size and type mismatch errors in your workflow. This feature does not change the generated
code for operations or functions on constant or fixed-size inputs.

For more information, see Generate Code With Implicit Expansion Enabled and Optimize Implicit
Expansion in Generated Code.

 MATLAB Programming for Code Generation

4-3

https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.mfunctionname.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-code-with-implicit-expansion-enabled.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/optimizie-implicit-expansion-in-generated-code.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/optimizie-implicit-expansion-in-generated-code.html

Supported Functions

Expanded code generation for tables and timetables
In R2021b, code generation supports more capabilities and MATLAB toolbox functions when you use
tables and timetables.

The supported functions for tables and timetables are:

• innerjoin
• mergevars
• outerjoin

For more information, see Code Generation for Tables and Code Generation for Timetables.

Code generation for more MATLAB functions
• digraph
• graph
• hess
• ode78
• ode89

Code generation for more toolbox functions
In R2021b, you can generate code for many additional toolbox functions and objects. For a list of all
functions and objects that are supported for code generation, see:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

These are links to the release notes of some toolboxes that added code generation support in R2021b:

Computer Vision Toolbox

See Generate C and C++ Code Using MATLAB Coder: Support for functions.

Image Processing Toolbox

See C Code Generation: Generate code from five functions using MATLAB Coder.

Signal Processing Toolbox

See C/C++ Code Generation Support: Code generation for filtering, spectral analysis, and vibration
analysis.

Wavelet Toolbox

See C/C++ Code Generation: Automatically generate code for wavelet functions.

R2021b

4-4

https://www.mathworks.com/help/releases/R2021b/matlab/ref/innerjoin.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/table.mergevars.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/outerjoin.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-tables.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-timetables.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/digraph.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/graph.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/hess.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/ode78.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/ode89.html
https://www.mathworks.com/help/releases/R2021b//referencelist.html?type=function
https://www.mathworks.com/help/releases/R2021b//referencelist.html?type=function
https://www.mathworks.com/help/releases/R2021b/vision/release-notes.html#mw_2356af8e-047c-408a-b0ea-c978dc7da3d2
https://www.mathworks.com/help/releases/R2021b/images/release-notes.html#mw_e3ba864e-c4db-4bcb-9fb9-de8fe0d026e6
https://www.mathworks.com/help/releases/R2021b/signal/release-notes.html#mw_1c319237-7ea5-4360-8732-4207e304ed0f
https://www.mathworks.com/help/releases/R2021b/signal/release-notes.html#mw_1c319237-7ea5-4360-8732-4207e304ed0f
https://www.mathworks.com/help/releases/R2021b/wavelet/release-notes.html#mw_f21bd961-e7dc-4409-9fd5-4d2e73d55a2a

Generated Code Improvements

Generate C++11 enumerations that specify underlying type
C++11 and subsequent C++ standards enable you to specify the underlying type of an enumeration,
just like MATLAB does. In addition, to comply with AUTOSAR C++14 Rule A7-2-2 (Polyspace Bug
Finder), the underlying types of enumerations in your C++ code must be explicitly defined.

If you set the target language standard to 'C++11 (ISO)', the code generator now converts a
MATLAB enumeration class to a C++ enumeration that explicitly defines the underlying type.

In the previous release, the C++11 code generated for MATLAB enumerations had the same
appearance as the generated C++03 code in R2021b. The current behavior produces C++11 code
that is easier to read and use.

See Code Generation for Enumerations.

MATLAB Code R2021a Generated Code R2021b Generated Code
classdef Bearing < int16
 enumeration
 North (0)
 East (90)
 South (180)
 West (270)
 end
end

classdef Vertical < int32
enumeration
 Up(0)
 Down(1)
end
end

typedef short Bearing;

// enum Bearing
const Bearing North = 0;
const Bearing East = 90;
const Bearing South = 180;
const Bearing West = 270;

enum Vertical
{
 Up = 0, // Default value
 Down
};

enum Bearing : short
{
 North = 0, // Default value
 East = 90,
 South = 180,
 West = 270
};

enum Vertical : int
{
 Up = 0, // Default value
 Down
};

Compatibility Considerations
In the previous release, the representation of the enumerated type in generated C++11 code
depended on the base type of the MATLAB enumeration:

• If the base type was the native integer type for the target platform (for example, int32), the code
generator produced a C++ 11 enumeration. The generated C++11 enumeration did not contain
an explicit specification of the underlying type.

• If the base type was different from the native integer type, the MATLAB enumeration members
were converted to constants in the generated C++11 code.

In R2021b, irrespective of the base type, the MATLAB enumeration is converted to a C++11
enumeration. In addition, the C++11 enumeration explicitly specifies the underlying type.

 Generated Code Improvements

4-5

https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-enumerations.html

Code Generation Workflow

Specify custom hardware targets during code generation
The code generator enables you to extend the range of supported hardware by using the
target.create and target.add functions to register new devices. In R2021b, after you register a
new device, you can create a coder.Hardware object for the device that contains the hardware
board parameters for C/C++ code generation from MATLAB code.

hw = coder.hardware('My New Device')

To use this object hw for code generation, assign it to the Hardware property of a
coder.CodeConfig or coder.EmbeddedCodeConfig object that you pass to codegen.

cfg = coder.config('lib');
cfg.Hardware = hw;

The registered device also appears as an option on the Hardware tab of the MATLAB Coder app. If
you use the app to generate code, you can specify the device directly from the drop-down list.

See coder.hardware and Register New Hardware Devices.

If you have Embedded Coder®, you can now set up connectivity between MATLAB and your custom
target hardware and run processor-in-the-loop (PIL) simulations on the target. See Set Up PIL
Connectivity by Using target Package (Embedded Coder).

R2021b

4-6

https://www.mathworks.com/help/releases/R2021b/coder/ref/target.create.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/target.add.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.hardware.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/register-new-hardware-devices.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html

Performance

SIMD code generation for Intel hardware
In R2021b, you can generate single instruction, multiple data (SIMD) code from MATLAB code by
using Intel SSE technology. For computationally intensive operations on supported blocks, SIMD
intrinsics can significantly improve the performance of the generated code on Intel platforms. To
generate code that uses SIMD intrinsics, set the new configuration parameter Leverage target
hardware instruction set extensions to SSE2. This parameter is on the Speed pane. If you have
Embedded Coder, you can generate code that uses additional SIMD instruction sets. For more
information, see Generate SIMD Code for MATLAB Functions.

C Code Generation: Generate portable C code that has improved
performance for five functions
You can generate portable C code that has faster execution speed than in previous releases for these
functions:

• hsv2rgb
• imadjust
• imfill
• imfilter
• imreconstruct

The optimizations include multithreading and algorithm improvements. Generating portable C code
requires MATLAB Coder.

Generate optimized code by unrolling parallel for loops
In R2021b, the code generator uses the configurable Loop unrolling threshold value to determine
whether to automatically unroll parallel for-loops (parfor-loops).

When the code generator unrolls a parfor-loop, it produces a copy of the loop body for each
iteration. For a small number of loop iterations that perform some simple calculation, parallelization
is inefficient as it introduces overheads, which includes time taken for thread creation, data
synchronization between threads, and thread deletion. Unrolling the loops that have a large number
of iterations can significantly increase code generation time and generate inefficient code.

The default value of the Loop unrolling threshold is 5. By modifying the threshold, you can fine-
tune loop unrolling. To modify the threshold, use either of these steps:

• In a configuration object for standalone code generation, set the LoopUnrollThreshold
property.

• In the MATLAB Coder app, on the Speed tab, set Loop unrolling threshold.

Eliminated dead code lines containing variable indices
In R2021a, the code generated from a MATLAB function contained dead code involving variable
indices. In R2021b, the code generator identifies the dead code that has a variable index and

 Performance

4-7

https://www.mathworks.com/help/releases/R2021b/coder/csh/coder_csh/speed.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-simd-code-for-matlab-blocks.html

eliminates those. Eliminating the dead code or unnecessary data copies conserves RAM and ROM
consumption, and improves execution speed.

Consider the MATLAB function mLoopDeadCode.

function B = mLoopDeadCode(A, idx)
 B = zeros(size(A));
 B(idx) = 2 * A(idx);
 B(idx) = 3 + A(idx);
end

In R2021a, the code generator produced this C code:

void mLoopDeadCode(const double A[4], double idx, double B[4])
{
 double B_tmp;
 B[0] = 0.0;
 B[1] = 0.0;
 B[2] = 0.0;
 B[3] = 0.0;
 B_tmp = A[(int)idx - 1];
 B[(int)idx - 1] = 2.0 * B_tmp;
 B[(int)idx - 1] = B_tmp + 3.0;
}

The code contained a dead code line involving the variable index (int)idx - 1. This line was
executed but the result was never used.

In R2021b, the code generator produced this C code:

void mLoopDeadCode(const double A[4], double idx, double B[4])
{
 B[0] = 0.0;
 B[1] = 0.0;
 B[2] = 0.0;
 B[3] = 0.0;
 B[(int)idx - 1] = A[(int)idx - 1] + 3.0;
}

The generated code does not contain the dead code line and unnecessary data copies. The code
generator identifies the dead code that has a variable index and eliminates that. This optimization
improves RAM and ROM consumption and execution speed.

Improved execution speed through common subexpression
elimination
In R2021a, the code generated from a MATLAB function contained redundant subexpressions that
were used to repeatedly cast the data type of the same expression value. In R2021b, the generated
code uses a temporary variable to hold the value of these subexpressions, which eliminates redundant
conversions of data type. This optimization improves the execution speed of the generated code.

This table compares the code generated in R2021b with the code generated in R2021a. For the
comparison, use the supporting files that are present in the working folder of the example Generate C
++ Classes for MATLAB® Classes That Model Simple and Damped Oscillators.

R2021b

4-8

https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-cpp-classes-for-matlab-classes-that-model-simple-and-damped-oscillators.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-cpp-classes-for-matlab-classes-that-model-simple-and-damped-oscillators.html

MATLAB Code R2021a Generated Code R2021b Generated Code
function [time,position] = evolution(obj,initialPosition,
initialVelocity,timeInterval,timeStep)
 numSteps = floor(timeInterval/timeStep);
 n = numSteps + 1;
 position = zeros(n,1);
 time = zeros(n,1);
 position(1) = initialPosition;
 for i = 1:numSteps
 position(i+1) = obj.dynamics(initialPosition,
 initialVelocity,i*timeStep);
 time(i+1) = i*timeStep;
 end
 end

void simpleOscillator::evolution
(double initialPosition, double
 initialVelocity, double timeInterval,
 double timeStep, coder::array<double,
 1U> &b_time, coder::array<double, 1U> &position) const
 {
 double numSteps;
 int i;
 int loop_ub;
 numSteps = std::floor(timeInterval / timeStep);
 position.set_size((static_cast<int>(numSteps + 1.0)));
 loop_ub = static_cast<int>(numSteps + 1.0);
 for (i = 0; i < loop_ub; i++) {
 position[i] = 0.0;
 }

 b_time.set_size((static_cast<int>(numSteps + 1.0)));
 loop_ub = static_cast<int>(numSteps + 1.0);
 for (i = 0; i < loop_ub; i++) {
 b_time[i] = 0.0;
 }

void simpleOscillator::evolution
(double initialPosition, double initialVelocity,
 double timeInterval, double timeStep,
 coder::array<double, 1U> &b_time,
 coder::array<double, 1U> &position) const
{
 double numSteps;
 int i;
 int loop_ub_tmp;
 numSteps = std::floor(timeInterval / timeStep);
 loop_ub_tmp = static_cast<int>(numSteps + 1.0);
 position.set_size(loop_ub_tmp);
 b_time.set_size(loop_ub_tmp);
 for (i = 0; i < loop_ub_tmp; i++) {
 position[i] = 0.0;
 b_time[i] = 0.0;
 }

In R2021a, the generated code contained subexpressions to repeatedly cast the data type of the same
expression (numSteps + 1.0). In R2021b, the generated code uses the temporary variable
loop_ub_tmp for holding the value of the subexpressions, thereby eliminating the redundancy.

Generation of vectorized MEX code in JIT compilation mode
In R2021b, when you use just-in-time compilation for MEX code generation with the memory integrity
checks disabled, the code generator generates vectorized code. To generate vectorized code for
integer type and for loops, in addition to memory integrity checks, you must disable integer
saturation and responsiveness checks respectively. This optimization improves execution speed of the
generated MEX code. For more information, see Control Run-Time Checks.

Optimized dynamic array access
In R2021b, a new configuration parameter CacheDynamicArrayDataPointer is introduced in
MATLAB Coder to improve the run-time performance of dynamic arrays. It hoists the data pointer to a
temporary variable and uses this temporary variable to access the matrix data.

By default, the parameter is enabled for MEX, static library, dynamic linked library, and executable
configurations.

To disable the parameter, do one of the following:

• In a code generation configuration object, set the CacheDynamicArrayDataPointer property to
false.

• Alternatively, open the MATLAB Coder app. On the Advanced tab, deselect the Cache dynamic
array data option.

Limitation:

This parameter is not supported for C++ coder::array.

 Performance

4-9

https://www.mathworks.com/help/releases/R2021b/coder/ug/controlling-run-time-checks.html

For more information, see Optimize Dynamic Array Access.

Specify threads to parallelize for and parfor-loops
In R2021b, you can control the number of threads required to execute parallel loops in the C/C++
code that you generate from MATLAB code. The cross-compilation enables you to generate code on
the host machine and execute it on the target machine.

The table shows a for and parfor-loop example to generate C/C++ code from MATLAB code by
using the codegen command.

MATLAB Function Commands To Generate Code C/C++ Generated Code
for-loop example

function y = forExample(n) %#codegen
 y = zeros(1,n);
 for i = 1:n
 y(i) = 42;
 end
end

n = 1000;
cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.NumberOfCpuThreads = 3;

codegen -config cfg forExample -args {n} -report

#pragma omp parallel for num_threads(3 >
omp_get_max_threads() ? omp_get_max_threads() : 3)
 for (b_i = 0; b_i < i; b_i++) {
 y->data[b_i] = 42.0;
 }

parfor-loop example

function y = parforExample(n) %#codegen
 y = ones(1,n);
 parfor(i = 1:n)
 y(i) = i;
 end
end

n = 1000;
cfg = coder.config('lib');
cfg.NumberOfCpuThreads = 4;

codegen -config cfg parforExample -args {n} -report

#pragma omp parallel for num_threads(4 >
 omp_get_max_threads() ? omp_get_max_threads() : 4)

 for (i = 0; i <= ub_loop; i++) {
 y->data[i] = (double)i + 1.0;
 }

The following table lists the ways to set number of threads required to parallelize for-loops in the
generated code and their precedence order.

Preceden
ce

Options to Set Number of Threads Description

1 Parfor (for only parfor-loop) parfor (k = 1:10, 6)

2 Configuration property/option:
NumberOfCpuThreads

cfg.NumberOfCpuThreads = 8;

3 Target Processor property/option:
NumberOfCores,
NumberOfThreadsPerCore

processor.NumberOfCores = 4;
processor.NumberOfThreadsPerCore = 2;

If you do not select any precedence order, then the number of threads is set to
omp_get_max_threads(), which returns a maximum number of available threads during run time.

For more information, see Specify Maximum Number of Threads to Run Parallel for-Loops in the
Generated Code.

R2021b

4-10

https://www.mathworks.com/help/releases/R2021b/coder/ug/optimized-dynamic-array-access.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/specify-threads-to-parallelize-for-and-parfor-loops.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/specify-threads-to-parallelize-for-and-parfor-loops.html

Deep Learning with MATLAB Coder
Deep Learning Workflow: Update network parameters after code
generation
In R2021b, you can update learnable and state parameters of deep learning networks without
regenerating code for the network. You can update the network parameters for SeriesNetwork,
DAGNetwork and dlnetwork objects. Use the coder.regenerateDeepLearningParameters
function to regenerate files containing network learnables and states parameters. Parameter update
supports MEX and standalone code generation for the Intel Math Kernel Library for Deep Neural
Networks (MKL-DNN) and the ARM Compute libraries.

See:

• Help topic: Update Network Parameters After Code Generation
• Example: Post-Code-Generation Update of Deep Learning Network Parameters

Deep Learning Arrays: Generate code for more functions that use
dlarray
In R2021b, you can generate code for additional MATLAB functions that use dlarray (Deep
Learning Toolbox) inputs. Code generation support includes:

• Unary math operations — Find the inverse tangent by using atan2.
• Binary math operations — Use minus(-), plus(+), rdivide(./), and times(.*) to perform

binary element-wise math operations.
• Reduction operations — Perform reduction operations on dlarray by using mean, prod, and sum.
• Comparison operations — Use max and min to find the maximum or minimum elements of a single

dlarray or between two formatted dlarray inputs.
• Indexing operations — Use colon, : for indexing into a dlarray.
• Logical operations — Use functions such as and and eq to perform logical operations on the data

within dlarray. For other supported logical operations, see Logical Operations.
• Size manipulation functions — Manipulate the dimensions of a dlarray by using reshape and

squeeze.
• Transposition operations — Use ctranspose, permute, ipermute, and transpose to transpose

dlarray matrices.
• Concatenation functions — Concatenate deep learning arrays by using cat, horzcat, and

vertcat.
• Conversion functions — Change the underlying dlarray data type by using the cast function.
• Size identification functions — Query the dimensions of the dlarray data by using iscolumn,

ismatrix, isrow, isscalar, and isvector.

Custom Layers: Use dlarray in deep learning networks that have
custom layers
You can now generate code for custom deep learning layers that use deep learning arrays. Custom
layer code generation supports unformatted and formatted dlarray (Deep Learning Toolbox) for

 Deep Learning with MATLAB Coder

4-11

https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.regeneratedeeplearningparameters.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-dlarrays_mw_b936ef2d-2ac8-43ac-b134-62fa6185e531.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/post-codegen-network-learnables-update-raspberrypi.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/atan2.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/minus.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/plus.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/rdivide.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/times.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/prod.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/sum.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/colon.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/and.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/eq.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-dlarrays_mw_4168b65d-1bb2-4fc5-b59a-ab407a112e2f.html#mw_8bcabb91-ba48-4ece-b0a9-cf18cbdffb6f
https://www.mathworks.com/help/releases/R2021b/matlab/ref/reshape.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/squeeze.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/ctranspose.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/permute.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/ipermute.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/transpose.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/double.cat.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/horzcat.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/vertcat.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/cast.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/iscolumn.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/ismatrix.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/isrow.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/isscalar.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/isvector.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/dlarray.html

MEX and standalone workflows. For other usage notes and limitations of custom layers with
dlarray, see Supported Layers.

Code generation from MATLAB for dlnetwork that contains sequences
In R2021b, you can generate code for dlnetwork (Deep Learning Toolbox) that have vector
sequence inputs. Code generation support includes:

• dlarray (Deep Learning Toolbox) containing vector sequences that have 'CT' or 'CBT' data
formats.

• A dlnetwork object that has multiple inputs. For ARM Compute, the dlnetwork can have
sequence and non-sequence input layers. For Intel MKL-DNN, input layers must be all sequence
input layers.

For more information, see dlnetwork (Deep Learning Toolbox).

Generate generic C/C++ code for more deep learning layers
In R2021b, you can generate C or C++ code that does not depend on any third-party libraries for
these additional deep learning layers:

• clippedReluLayer (Deep Learning Toolbox)
• concatenationLayer (Deep Learning Toolbox)
• convolution2dLayer (Deep Learning Toolbox)
• eluLayer (Deep Learning Toolbox)
• groupNormalizationLayer (Deep Learning Toolbox)
• leakyReluLayer (Deep Learning Toolbox)
• maxPooling2dLayer (Deep Learning Toolbox)
• scalingLayer (Reinforcement Learning Toolbox)
• nnet.keras.layer.FlattenCStyleLayer
• nnet.keras.layer.GlobalAveragePooling2dLayer
• nnet.keras.layer.SigmoidLayer
• nnet.keras.layer.TanhLayer
• nnet.keras.layer.ZeroPadding2dLayer
• nnet.onnx.layer.ElementwiseAffineLayer
• nnet.onnx.layer.FlattenInto2dLayer
• nnet.onnx.layer.FlattenLayer
• nnet.onnx.layer.IdentityLayer
• nnet.onnx.layer.VerifyBatchSizeLayer

See Networks and Layers Supported for Code Generation.

Deploy generic C/C++ code on ARM Cortex-M processors
In R2021b, you can deploy generic C/C++ code that does not depend on any third-party libraries on
STMicroelectronics® Discovery boards and STMicroelectronics Nucleo boards that use ARM Cortex®-

R2021b

4-12

https://www.mathworks.com/help/releases/R2021b/coder/ug/networks-and-layers-supported-for-c-code-generation.html#mw_1c8fc5c7-98bf-440a-b62f-af4398bff314
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.clippedrelulayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.concatenationlayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.elulayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.groupnormalizationlayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.leakyrelulayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.maxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2021b/reinforcement-learning/ref/rl.layer.scalinglayer.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/networks-and-layers-supported-for-c-code-generation.html

M processors. For deployment on these devices, you must install one of these two support packages
and the corresponding required products, as described in the support package documentation:

• For deployment on STMicroelectronics Discovery boards, install the Embedded Coder Support
Package for STMicroelectronics Discovery Boards (https://www.mathworks.com/hardware-
support/st-discovery-board.html).

Supported boards:

• STM32F746G-Discovery
• STM32F769I-Discovery
• STM32F4-Discovery

• For deployment on STMicroelectronics Nucleo boards, install the Simulink Coder Support Package
for STMicroelectronics Nucleo Boards (https://www.mathworks.com/hardware-support/st-
nucleo.html).

Supported boards:

• Nucleo-F401RE
• Nucleo-F103RB
• Nucleo-F302R8
• Nucleo-F031K6
• Nucleo-L476RG
• Nucleo-L053R8
• Nucleo-F746ZG
• Nucleo-F411RE
• Nucleo-F767ZI
• Nucleo-H743ZI/Nucleo-H743ZI2

For an example application, see Generate Code for LSTM Network and Deploy on Cortex-M Target .

Generate C++ code that performs inference computations in 8-bit
integers for more layers
In R2021b, you can generate C++ code for these layers that uses the ARM Compute Library and
performs inference computations in 8-bit integers:

• maxPooling2dLayer (Deep Learning Toolbox)
• reluLayer (Deep Learning Toolbox)

See Code Generation for Quantized Deep Learning Networks.

Generate C++ code that uses third-party libraries for more deep
learning layers
In R2021b, C++ code generation that uses the Intel MKL-DNN library or the ARM Compute library
supports this additional layer:

 Deep Learning with MATLAB Coder

4-13

https://www.mathworks.com/hardware-support/st-discovery-board.html
https://www.mathworks.com/hardware-support/st-discovery-board.html
https://www.mathworks.com/hardware-support/st-nucleo.html
https://www.mathworks.com/hardware-support/st-nucleo.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/generate-code-for-lstm-network-and-deploy-on-cortex-m.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.maxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.relulayer.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-quantized-deep-learning-networks.html

• groupNormalizationLayer (Deep Learning Toolbox)
• nnet.onnx.layer.FlattenInto2dLayer
• nnet.onnx.layer.VerifyBatchSizeLayer

See Networks and Layers Supported for Code Generation.

Functionality being removed or changed
cnncodegen Function: Support for CPU targets removed
Errors

In R2021b, the cnncodegen function does not generate C++ code for Intel and ARM CPU targets. To
generate C++ code for deep learning layers and networks for these targets, use the codegen
function.

See Code Generation for Deep Learning Networks with MKL-DNN and Code Generation for Deep
Learning Networks with ARM Compute Library.

Support for ARM Compute library versions 18.11 and 19.02 removed
Errors

In R2021b, generation of C++ code that uses versions 18.11 or 19.02 of the ARM Compute library is
no longer supported.

See:

• coder.ARMNEONConfig
• Prerequisites for Deep Learning with MATLAB Coder

R2021b

4-14

https://www.mathworks.com/help/releases/R2021b/deeplearning/ref/nnet.cnn.layer.groupnormalizationlayer.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2021b/coder/ref/coder.armneonconfig.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

4-15

https://www.mathworks.com/support/bugreports/

R2021a

Version: 5.2

New Features

Bug Fixes

Compatibility Considerations

5

MATLAB Programming for Code Generation

Generate code for inherited constructors
In R2021a, the code generated for the default constructor of a subclass in your MATLAB code has the
same run-time behavior as the MATLAB execution.

The run-time behavior of the default constructor of a MATLAB class follows these rules:

• If the class inherits from one or more parent classes, the default constructor forwards all its
arguments to the constructor of the first parent class. In cases of multiple inheritence, the default
constructor does not forward the input arguments to any of the other parent classes.

• If the class does not inherit from any class, the default constructor does not accept any input
arguments.

In previous releases, the code generated for the default constructor of a class did not accept any
input arguments, irrespective of whether or not this class inherited from a parent class.

See Implicit Call to Inherited Constructor.

Generate code for name=value syntax for passing name-value
arguments
In R2021a, you can generate code for the name=value syntax for passing name-value arguments to
MATLAB functions.

In MATLAB, the syntax foo(name=value) is equivalent to the syntax foo("name",value). You can
include multiple name-value arguments in your MATLAB function call. The name-value arguments
must appear after all the other arguments in the call.

Code generation does not support function argument validation.

For more information on the name=value syntax, see Name-Value Arguments.

Generate code for property information functions isprop and
properties
In R2021a, you can generate code for these functions that provide information about class properties:

• isprop
• properties

Code generation usage notes and limitations for the properties function:

• The function call properties(obj) is supported for code generation only if obj is an instance of
a MATLAB class defined in a .m file.

• The order in which the code generated for the function properties returns the properties of an
object might be different from MATLAB execution.

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/matlab/matlab_oop/class-constructor-methods.html#mw_cd265b57-a33e-4947-beae-0b7a8d3f330f
https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/function-argument-validation-1.html#mw_1b62b6d6-a445-4c55-a9b9-9c70becfdbe6
https://www.mathworks.com/help/releases/R2021a/matlab/ref/isprop.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/properties.html

Supported Functions

Expanded code generation for categorical arrays
In R2021a, code generation supports more MATLAB toolbox functions when you use categorical
arrays.

The supported functions for categorical arrays are:

• issorted
• issortedrows
• sort
• sortrows

For more information, see Code Generation for Categorical Arrays.

Expanded code generation for tables and timetables
In R2021a, code generation supports more capabilities and MATLAB toolbox functions when you use
tables and timetables.

The supported functions for tables are:

• issortedrows
• join
• renamevars
• rows2vars
• sortrows
• splitvars
• stack
• unstack
• varfun

The supported functions for timetables are:

• issorted
• issortedrows
• join
• renamevars
• sortrows
• splitvars
• stack
• unstack
• varfun

For more information, see Code Generation for Tables and Code Generation for Timetables.

 Supported Functions

5-3

https://www.mathworks.com/help/releases/R2021a/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/double.sortrows.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-categorical-arrays.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.join.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.renamevars.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/rows2vars.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/double.sortrows.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.splitvars.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.stack.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/unstack.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/varfun.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.join.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.renamevars.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/double.sortrows.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.splitvars.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.stack.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/unstack.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/varfun.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-tables.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-timetables.html

Code generation for more MATLAB functions
• convhulln
• delaunayn
• logm
• sylvester
• voronoin

Code generation for more toolbox functions
In R2021a, you can generate code for many additional toolbox functions and objects. For a list of all
functions and objects that are supported for code generation, see:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

These are links to the release notes of some toolboxes that added code generation support in R2021a:

Computer Vision Toolbox

See “Extended Capability: Perform GPU and C/C++ code generation” (Computer Vision Toolbox)

Image Processing Toolbox

See “C Code Generation: Generate code from the adapthisteq function using MATLAB Coder” (Image
Processing Toolbox)

Signal Processing Toolbox

See “C/C++ Code Generation Support: Code generation for filtering, signal modeling, spectral
analysis, and statistics” (Signal Processing Toolbox).

Statistics and Machine Learning Toolbox

• See “Generate C/C++ code for performing incremental learning using linear regression or binary
classification model functions (requires MATLAB Coder)” (Statistics and Machine Learning
Toolbox)

• See “Generate C/C++ code for prediction by using a machine learning model with heterogeneous
data (requires MATLAB Coder)” (Statistics and Machine Learning Toolbox)

Wavelet Toolbox

See “C/C++ Code Generation: Automatically generate code for wavelet functions” (Wavelet Toolbox)

R2021a

5-4

https://www.mathworks.com/help/releases/R2021a/matlab/ref/convhulln.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/delaunayn.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/logm.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/sylvester.html
https://www.mathworks.com/help/releases/R2021a/matlab/ref/voronoin.html
https://www.mathworks.com/help/releases/R2021a//referencelist.html?type=function
https://www.mathworks.com/help/releases/R2021a//referencelist.html?type=function

Generated Code Improvements

Multisignature MEX support for multiple entry-point functions
In R2021a, you can generate one MEX function for multiple entry-point functions containing multiple
signatures during code generation. This one MEX function reduces the overhead involved in
generating separate MEX functions for different entry-point functions. The generated MEX function
works with all the entry-point functions and all the signatures provided during code generation.

Suppose that you want to generate a MEX function from multiple entry-point functions myAdd and
myMul that works with these entry-point functions for three different data types: double, int8, and
int16. Specify the three arguments as: {1,2}, {int8(1), int8(2)}, and {int16(1),
int16(2)}.

To generate code for myAdd and myMul functions, at the MATLAB command prompt, run this
codegen command:

codegen -config:mex myAdd.m -args {1,2} -args {int8(1),int8(2)} myMul.m -args {1,2} -args {int16(1),int16(2)} -o 'myMath' -report

This syntax generates one MEX function myMath for all the signatures that you specified in the
codegen command.

You can verify the output values by using the generated MEX function myMath at the command
prompt. Make sure that the values you pass to myMath match the input properties that you specified
before code generation.

myMath("myAdd",3,4)

ans =

 7

myMath("myAdd",int8(5),int8(6))

ans =

 int8
 11

myMath("myMul",3,4)

ans =

 12

myMath("myMul",int16(5),int16(6))

ans =

 int16
 30

For more information, see Generate One MEX Function That Supports Multiple Signatures.

 Generated Code Improvements

5-5

https://www.mathworks.com/help/releases/R2021a/coder/ug/mex-generation-for-multiple-signatures.html

Catch and handle exceptions for run-time errors that the generated
standalone C++ code throws
In R2021a, if you generate standalone C++ code with run-time error detection and reporting
enabled, the generated code throws std::runtime_error exceptions for the run-time errors. When
you call the generated C++ entry-point functions, you can catch and handle these exceptions by
using a try-catch block in your external C++ code.

For example, consider this MATLAB function:

function y = foo(x)
y = sqrt(x);
end

Generate C++ code for the function foo that accepts double scalar inputs. Enable run-time error
detection and reporting in the generated code.

cfg = coder.config('dll');
cfg.RuntimeChecks = true;
codegen -config cfg -lang:c++ foo -args 1 -report

The code generator produces a C++ function that has signature double foo(double x), which
both accepts and returns double scalar values. Because the sqrt function returns real outputs for
only nonnegative inputs, the generated code produces an error for negative input values. The
function rtErrorWithMessageID defined in the generated file foo.cpp throws the exception for
this error.

static void rtErrorWithMessageID(const char *b, const char *aFcnName,
 int aLineNum)
{
 std::stringstream outStream;
 ((outStream << "Domain error. To compute complex results from real x, use \'")
 << b)
 << "(complex(x))\'.";
 outStream << "\n";
 ((((outStream << "Error in ") << aFcnName) << " (line ") << aLineNum) << ")";
 throw std::runtime_error(outStream.str());
}

See Generate Standalone C/C++ Code that Detects and Reports Run-Time Errors.

Compatibility Considerations
In previous releases, the generated error reporting function used fprintf to write error messages
to stderr. Then it used abort to terminate the application. In R2021a, the error reporting function
throws a std::runtime_error exception instead.

C++11 as default language standard for generated C++ code
In R2021a, the default language standard is set to 'C++11' (ISO) for generated C++ code and
'C99' (ISO) for generated C code. The default value of the language standard setting
TargetLangStandard is set to 'Auto'.

The language standard assigned is dependent on the language specified in the TargetLang setting
of your coder.EmbeddedCodeConfig or coder.CodeConfig object. If TargetLang is set to 'C+

R2021a

5-6

https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-standalone-code-that-detects-and-reports-run-time-errors.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.codeconfig.html

+', the 'Auto' setting assigns 'C++11' (ISO) as the language standard. If TargetLang is set to
'C', 'C99' (ISO) is assigned as the language standard.

Compatibility Considerations
In R2021a, TargetLangStandard is set to 'Auto' by default. If your existing workflows require a
specific language standard, set the TargetLangStandard to the standard required by your project.

Improvement to C++ code generated for enumerations with nonnative
size
In R2021a, if your enumeration class derives from a class that is different from the native integer
type for the target platform (for example, int32), the corresponding enumeration members are
converted to constants. These constants belong to the namespace that contains the enumeration type
definition in the generated C++ code.

In previous releases, the enumeration members that had nonnative size in your MATLAB code were
converted to macros defined by using the #define directive and were not contained in a namespace.
The current behavior produces code that is better organized and easier to read and use.

MATLAB Code R2020b Generated Code R2021a Generated Code
This enumeration is defined
inside the package pkg:

classdef(Enumeration) MyColorsAddClassName < int16
 enumeration
 Purple(0),
 Orange(1),
 Yellow(2)
 end

 methods(Static)
 function y = addClassNameToEnumNames()
 y = true;
 end
 end
end

// Type Definitions
namespace pkg
{
 typedef short MyColorsAddClassName;
}

#ifndef pkg_MyColorsAddClassName_constants
#define pkg_MyColorsAddClassName_constants

// enum pkg_MyColorsAddClassName
#define pkg_MyColorsAddClassName_Purple ((::pkg::MyColorsAddClassName)0)
#define pkg_MyColorsAddClassName_Orange ((::pkg::MyColorsAddClassName)1)
#define pkg_MyColorsAddClassName_Yellow ((::pkg::MyColorsAddClassName)2)
#endif //pkg_MyColorsAddClassName_constants

// Type Definitions
namespace pkg {
typedef short MyColorsAddClassName;

// enum pkg_MyColorsAddClassName
const MyColorsAddClassName MyColorsAddClassName_Purple{0};
const MyColorsAddClassName MyColorsAddClassName_Orange{1};
const MyColorsAddClassName MyColorsAddClassName_Yellow{2};

} // namespace pkg

See Code Generation for Enumerations.

Compatibility Considerations
If your entry-point function accepts or returns an enumeration that has a nonnative size, modify your
legacy C++ function that calls the generated entry-point function to use the new symbols for the
enumeration members (for example, pkg::MyColorsAddClassName_Purple instead of
pkg_MyColorsAddClassName_Purple).

Generate UTF-8 encoded C/C++ files that work across locales and
platforms
In R2021a, the generated C/C++ code files and the comments in these files use UTF-8 encoding. You
can use these files across locales and platforms.

 Generated Code Improvements

5-7

https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-enumerations.html

Code generation supports Unicode characters only in the comments in your MATLAB code. If you use
Unicode characters in string or character literals, the code generator produces an error.

Bundled CXSparse files in generated code
In R2021a, the generated CXSparse files are bundled into two files, one for real computations and
one for complex computations. These files are in the CXSparse folder with the name
cs_ri_bundle.cpp, which contains code for real computations and cs_ci_bundle.cpp, which
contains code for complex computations. This bundle build also applies to code generated in C.

This feature improves the build times of the code generator for MEX and standalone builds and
simplifies the parsing of the build file structure.

Compatibility Considerations
In previous releases, if you wanted to include the CXSparse files in your project, you included the
individual files in your code. To now reconcile your workflows, you include the bundled files in your
project.

R2021a

5-8

Code Generation Workflow

Improved Representations for Coder Type Objects
Starting in R2021a, the representation of coder type objects with coder.typeof() and
coder.newtype() is more succinct and excludes internal state values. This feature is applicable for
the following types:

• categorical
• datetime
• dlarray
• duration
• table
• timetable

The following table shows a few examples of the new representations of these classes and objects
passed into coder.typeof():

Coder Type Object New Representation
categorical matlab.coder.type.CategoricalType

 0x0 categorical
 Categories : 0x0 homogeneous cell
 Ordinal : 1x1 logical
 Protected : 1x1 logical

duration matlab.coder.type.DurationType
 1x1 duration
 Format : 1x8 char

table matlab.coder.type.TableType
 0x0 table
 Data : 1x0 homogeneous cell
 Description : 1x0 char
 UserData : 0x0 double
 DimensionNames : {'Row'} {'Variables'}
 VariableNames :
 VariableDescriptions : 1x0 homogeneous cell
 VariableUnits : 1x0 homogeneous cell
 VariableContinuity : 0x0 double
 RowNames : 0x0 homogeneous cell

In the new representations, non-constant properties display their type and size, while constant
properties display their values. The object properties can be edited as needed. You can assign scalar
values to object properties. The values are implicitly converted to coder type values. Values assigned
to constant properties are implicitly converted to constants.

Compatibility Considerations
The new representation of coder types can affect your workflows. If you require the legacy
representation of your coder type, use the getCoderType function on the variable that has the new
representation of your class or object.

 Code Generation Workflow

5-9

For example, to get the legacy representation of a table, use the variable that has the new
representation tt to call the getCoderType function:

t = table;
tt = coder.typeof(t);
ttLegacy = tt.getCoderType()

In the Coder Type Editor, the code generator includes the function getCoderType for these coder
types. You use this function to return the legacy representation of coder types.

Configuration Parameter Dialog Box: New layout and added
functionalities
In R2021a, the configuration parameter dialog box that you use to edit properties of
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig, and other related
code configuration objects has a new layout. The dialog box also has certain added functionalities
including improved search functionality, more informative tooltips, and option for generating
equivalent MATLAB script. See Specify Configuration Parameters in Command Line Workflow
Interactively.

Display status of code generation at command line
In R2021a, when generating code by using the codegen command, you can display messages
indicating the status of the code generation process at the MATLAB command line. To configure this
behavior, set the Verbosity property in a code configuration object or use the equivalent codegen
command option.

Verbosity = Equivalent codegen Option Behavior
'Silent' -silent If code generation succeeds

without warning, all messages
are suppressed, including when
you generate a report.

Warning and error messages are
displayed.

'Info' (default) This is the default behavior. No
explicit option.

Compared to the 'Silent'
mode, if code generation
succeeds, these additional
messages are displayed:

• Code generation
successful

• Link to the generated report,
if any

'Verbose' -v In addition to the messages
shown in the 'Info' mode,
code generation status and
target build log messages are
displayed.

R2021a

5-10

https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.mexcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/specify-configuration-parameters-at-the-command-line-by-using-dialog-box.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/specify-configuration-parameters-at-the-command-line-by-using-dialog-box.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/codegen.html

Compatibility Considerations
In previous releases, if you did not generate a report, the default behavior of successful code
generation was to not print any message. In R2021a, the default behavior of the code generator is to
print a message saying code generation is successful.

To get the previous default behavior of the codegen command, add the -silent option.

Format generated code by using clang-format
In R2021a, the CodeFormattingTool flag enables you to choose how to format the code. This flag
has these settings:

• Clang-format: The code generator formats your code by using clang-format.
• Auto: Uses an internal heuristic to determine if the generated code is formatted by clang-

format or a MathWorks® formatting tool. To determine whether your code is formatted by
clang-format, in a coder.config object, set the Verbosity option to 'Verbose'.

• MathWorks: Causes the code generator to revert to the legacy code formatting setting.

The CodeFormattingTool setting is available for all configuration objects, namely
coder.EmbeddedCodeConfig, coder.CodeConfig, and coder.MexCodeConfig.

Compatibility Considerations
In R2021a, the default formatting of the generated code might change. If this causes issues in your
workflow, set the CodeFormattingTool under your configuration object as MathWorks.

More options to specify multiple entries in code configuration objects
In R2021a, there are additional options to specify multiple file names, paths, or reserved names as
string arrays and a cell array of character vectors in the code configuration objects. For example, to
specify multiple reserved names, you can execute this command:

cfg = coder.config('lib');
cfg.ReservedNameArray = ["name1","name2","name3"];
cfg.ReservedNameArray

ans =

 1×3 string array

 "name1" "name2" "name3"

These configuration properties work for multiple entries in code configuration objects as string arrays
or a cell array of character vectors:

• CustomInclude
• CustomLibrary
• CustomSource
• ReservedNameArray
• ReplacementTypes.HeaderFiles

 Code Generation Workflow

5-11

https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.mexcodeconfig.html

In previous releases, you could specify only character vectors in a code configuration object.

Functionality being removed or changed
Capability to specify multiple entries in code configuration objects by using character
vector will be removed
Behavior change in future release

In a future release, specifying multiple file names, paths, or reserved names in code configuration
objects by using character vectors or string scalars that have delimiters will be removed. Use string
arrays and a cell array of character vector instead.

The Verbose property of code configuration objects to be removed
Behavior change in future release

In a future release, the Verbose property of coder.CodeConfig and
coder.EmbeddedCodeConfig will be removed.

To configure the code generation progress display, use the Verbosity property of these objects.

Target hardware data management
R2021a provides these target package enhancements for target hardware data management.

Function Enhancement
target.remove If you specify the name-value argument, 'IncludeAssociations',

true, the function removes the specified target object and associated
objects from an internal database. The function does not remove an
associated object if it is referenced by other target objects. The function
displays information about the removed objects, which you can suppress
by using the name-value argument, 'SuppressOutput', true.For
more information, see target.remove.

target.add The function displays information about the objects that it adds to an
internal database. The function also returns a vector that contains the
added objects. You can suppress the text output by using the name-
value argument, 'SuppressOutput', true. For more information,
see target.add.

target.export When you run the function generated by target.export, it returns
the registered target object and associated target objects. Previously,
the function did not return associated target objects. For more
information, see target.export.

Support Package for NVIDIA Jetson and NVIDIA DRIVE platforms
In R2021a, you can use the MATLAB Coder Support Package for NVIDIA® Jetson and NVIDIA DRIVE
Platforms to communicate with, deploy, and run code for the ARM CPUs on NVIDIA platforms such as
Jetson and DRIVE. To download the support package, use the Add-on Explorer. For more information
on the supported workflows, see MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA
DRIVE Platforms.

R2021a

5-12

https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/target.remove.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/target.add.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/target.export.html
https://www.mathworks.com/help/releases/R2021a/supportpkg/nvidia/index.html
https://www.mathworks.com/help/releases/R2021a/supportpkg/nvidia/index.html

Performance

Multithreading capabilities for more Image Processing Toolbox
functions
In R2021a, if you use a compiler that supports the Open Multiprocessing (OpenMP) application
interface, you can generate multithreaded C/C++ functions for some Image Processing Toolbox™
functions that are included in MATLAB code. This enhancement improves the function execution
speed.

The new optimized functions that have multithreading capabilities are:

• bwlabel
• houghpeaks
• otsuthresh
• bwareaopen
• bwboundaries
• imbilatfilt

The code generator generates multithreaded code for the houghpeaks function only when the
function takes a large Hough transform matrix as an input. For more information, see Algorithm
Acceleration Using Parallel for-Loops (parfor).

Automatic parallelization of for loops in generated code
In R2021a, you can generate parallel for loops automatically in the code you generate from your
MATLAB code. Automatic parallelization of a section of code might significantly improve the
execution speed of the generated code.

Automatic parallelization of for loops supports these build types for C/C++ targets: MEX, static
library, dynamically linked library, and executable.

This table compares the code generated in R2021a with automatic parallelization enabled with the
code generated in R2020b.

 Performance

5-13

https://www.mathworks.com/help/releases/R2021a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html

MATLAB Code R2020b Generated Code R2021a Generated Code
function [x, y] = autoparExample(x, y)
%#codegen
% Automatic parallelization example - explicit and implicit loops.

% Explicit for-loop.
for i = 10:numel(x)
 x(i) = sqrt(x(i));
end

% Generates implicit for-loop.
y = y * 17;
end

void autoparExample(double x[2000], double y[2000])
{
 int i;
 /* Explicit for-loop. */
 for (i = 0; i < 1991; i++) {
 x[i + 9] = sqrt(x[i + 9]);
 }
 /* Generates implicit for-loop. */
 for (i = 0; i < 2000; i++) {
 y[i] *= 17.0;
 }
}

void autoparExample(double x[2000], double y[2000])
{
 int i;
 /* Explicit for-loop. */
#pragma omp parallel for num_threads(omp_get_max_threads()) private(i)

 for (i = 0; i < 1991; i++) {
 x[i + 9] = sqrt(x[i + 9]);
 }
 /* Generates implicit for-loop. */
#pragma omp parallel for num_threads(omp_get_max_threads()) private(i)

 for (i = 0; i < 2000; i++) {
 y[i] *= 17.0;
 }
}

To automatically generate parallel for loops, do one of the following:

• In a code generation configuration object, set the EnableAutoParallelization property to
true.

• Alternatively, in the MATLAB Coder app, on the Speed tab, select the Enable automatic
parallelization option.

You might want to disable automatic parallelization for a particular loop if that loop performs better
in serial execution. To do this, place the coder.loop.parallelize('never') pragma
immediately before an explicit for loop in your MATLAB code. This pragma overrides the global
EnableAutoParallelization setting and prevents parallelization of that loop. For example, even
if automatic parallelization is enabled, the code generator does not parallelize this loop:

% Pragma to disable automatic parallelization of for-loops
coder.loop.parallelize('never');
for i = 1:n
 y(i) = y(i)*sin(i);
end

See Automatically Parallelize for Loops in Generated Code and coder.loop.parallelize.

More optimized inlining behavior of public methods of generated C++
classes
In R2021a, the code generator uses a more refined set of rules to determine whether to inline a
public method in the generated C++ code. Except in one special situation, the new rules are identical
to the rules for inlining ordinary functions.

The same inlining rules apply to ordinary functions and public methods in these situations:

• The body of the function or the method contains an explicit coder.inline('always') or
coder.inline('never') directive. This directive gets the highest precedence.

• You set the code configuration property InlineBetweenUserFunctions or the equivalent code
generation setting Inline between user functions in the MATLAB Coder app to 'Never',
'Speed', or 'Always'.

R2021a

5-14

https://www.mathworks.com/help/releases/R2021a/coder/ug/automatically-parallelize-for-loops.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.loop.parallelize.html

• A call to a method appears inside another method of the same class.

In a special situation, inlining a public method in the generated C++ code changes a private property
in your MATLAB code to a public property in the generated code and breaks data encapsulation. For
example, suppose that a public method myMethod that uses a private property prop of the object is
called by an entry-point function. If myMethod is inlined in the generated code, the property prop
must be visible from outside the object and changed to a public property. To limit this occurrence, if
InlineBetweenUserFunctions is set to 'Readability', the code generator does not inline the
public method calls that appear outside the class definition.

In previous releases, the code generator had a more restrictive strategy for inlining of public
methods. The code generator did not inline a public method call unless the method contained the
coder.inline('always') directive.

See:

• Generate C++ Classes for MATLAB Classes
• Control Inlining to Fine-Tune Performance and Readability of Generated Code

Generated code quality improvements
R2021a includes these generated code quality improvements:

• When possible, the code generator converts matrices or arrays that have a single element (for
example, int a[1] or int a[1][1][1]) to scalars (for example, int a). This conversion
improves the performance and readability of the generated code.

• The generated code creates fewer data copies when performing certain array operations such as
shrinking arrays in place, deleting array elements, and concatenating arrays.

 Performance

5-15

https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-c-classes-from-matlab-classes.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/control-inlining-using-configuration-object.html

Deep Learning with MATLAB Coder

Generate code for convolutional LSTM networks
In R2021a, you can generate code for deep learning networks that contain both a convolution layer
and a long short-term memory (LSTM) layer. The generated code can use either the Intel MKL-DNN
library or the ARM Compute library.

For an example that generates code for a convolutional LSTM network, see Code Generation for
Convolutional LSTM Network That Uses Intel MKL-DNN.

Generate generic C/C++ code for deep learning layers
In R2021a, you can generate C or C++ code that does not depend on any third-party libraries for
these deep learning layers:

• Input layers: featureInputLayer (Deep Learning Toolbox), imageInputLayer (Deep Learning
Toolbox), sequenceInputLayer (Deep Learning Toolbox)

• Output layers: classificationLayer (Deep Learning Toolbox), regressionLayer (Deep
Learning Toolbox)

• Combination layers: additionLayer (Deep Learning Toolbox), multiplicationLayer (Deep
Learning Toolbox)

• Activation layers: reluLayer (Deep Learning Toolbox), softmaxLayer (Deep Learning Toolbox),
sigmoidLayer (Deep Learning Toolbox), softplusLayer (Reinforcement Learning Toolbox),
tanhLayer (Deep Learning Toolbox)

• Input resize and reshape layers: depthToSpace2dLayer (Image Processing Toolbox),
resize2dLayer (Image Processing Toolbox)

• Long short-term memory (LSTM) layers: lstmLayer (Deep Learning Toolbox) and bilstmLayer
(Deep Learning Toolbox)

• dropoutLayer (Deep Learning Toolbox)
• fullyConnectedLayer (Deep Learning Toolbox)
• gruLayer (Deep Learning Toolbox)
• Custom deep learning layers that you create. The layer definition must specify the pragma

%#codegen. See Define Custom Deep Learning Layer for Code Generation (Deep Learning
Toolbox).

• Custom output layers.

See:

• Help topic: Generate Generic C/C++ Code for Deep Learning Networks
• Example: Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep

Learning

Generate code for dlnetwork workflows that use deep learning arrays
In R2021a, you can generate code for the dlarray (Deep Learning Toolbox) data type that you use
for inference with dlnetwork (Deep Learning Toolbox). Code generation support includes:

R2021a

5-16

https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-convolutional-lstm-network-that-uses-intel-mkl-dnn.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-convolutional-lstm-network-that-uses-intel-mkl-dnn.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.featureinputlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.imageinputlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.sequenceinputlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/classificationlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/regressionlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.additionlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.multiplicationlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.relulayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.softmaxlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.sigmoidlayer.html
https://www.mathworks.com/help/releases/R2021a/reinforcement-learning/ref/rl.layer.softpluslayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
https://www.mathworks.com/help/releases/R2021a/images/ref/nnet.cnn.layer.depthtospace2dlayer.html
https://www.mathworks.com/help/releases/R2021a/images/ref/nnet.cnn.layer.resize2dlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.dropoutlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.grulayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ug/define-custom-deep-learning-layer-for-code-generation.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-generic-cc-code-for-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-generic-c-cpp-code-for-sequence-to-sequence-regression-that-uses-deep-learning.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-generic-c-cpp-code-for-sequence-to-sequence-regression-that-uses-deep-learning.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlarray.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlnetwork.html

• Construction of formatted and unformatted dlarray
• Passing dlarray to entry-point functions and returning dlarray from entry-point functions
• Invoking a subset of functions on dlarray objects, including the object functions softmax (Deep

Learning Toolbox), sigmoid (Deep Learning Toolbox), and fullyconnect (Deep Learning
Toolbox).

• Passing formatted dlarray to the dlnetwork predict function inside an entry-point function

See:

• Help topic: Code Generation for dlarray
• Example: Generate Digit Images Using Variational Autoencoder on Intel CPUs

Generate code for convolution layers that performs inference
computations in 8-bit integers
In R2021a, you can generate C++ code for these convolution layers that uses the ARM Compute
Library and performs inference computations in 8-bit integers:

• 2-D convolution layer (convolution2dLayer (Deep Learning Toolbox))
• 2-D grouped convolution layer (groupedConvolution2dLayer (Deep Learning Toolbox)). The

value of the NumGroups input argument must be equal to 2.

To generate code that performs inference computations in 8-bit integers, in your
coder.ARMNEONConfig object dlcfg, set these additional properties:

dlcfg.CalibrationResultFile = 'dlquantizerObjectMatFile';
dlcfg.DataType = 'int8';

Alternatively, in the MATLAB Coder app, on the Deep Learning tab, set Target library to ARM
Compute. Then set the Data type and Calibration result file path parameters.

Here 'dlquantizerObjectMatFile' is the name of the MAT-file that dlquantizer (Deep
Learning Toolbox) generates for specific calibration data. For the purpose of calibration, set the
ExecutionEnvironment property of the dlquantizer object to 'CPU'.

See Code Generation for Quantized Deep Learning Network on Raspberry Pi.

Generate code for more layers
In R2021a, C++ code generation that uses the Intel MKL-DNN library or the ARM Compute library
supports these additional layers:

• 2-D depth to space layer (depthToSpace2dLayer (Image Processing Toolbox))
• Feature input layer (featureInputLayer (Deep Learning Toolbox))
• Flatten layer (flattenLayer (Deep Learning Toolbox))
• 2-D resize layer (resize2dLayer (Image Processing Toolbox))
• Sequence folding layer (sequenceFoldingLayer (Deep Learning Toolbox))
• Sequence unfolding layer (sequenceUnfoldingLayer (Deep Learning Toolbox))

See Networks and Layers Supported for Code Generation.

 Deep Learning with MATLAB Coder

5-17

https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlarray.softmax.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlarray.sigmoid.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlarray.fullyconnect.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-dlarrays.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/generate-digit-images-using-variational-autoencoder-intel-cpu.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.groupedconvolution2dlayer.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.armneonconfig.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/dlquantizer.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-quantized-deep-learning-network-on-raspberry-pi.html
https://www.mathworks.com/help/releases/R2021a/images/ref/nnet.cnn.layer.depthtospace2dlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.featureinputlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.flattenlayer.html
https://www.mathworks.com/help/releases/R2021a/images/ref/nnet.cnn.layer.resize2dlayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.sequencefoldinglayer.html
https://www.mathworks.com/help/releases/R2021a/deeplearning/ref/nnet.cnn.layer.sequenceunfoldinglayer.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/networks-and-layers-supported-for-c-code-generation.html

Generate code that uses newer versions of ARM Compute and Intel
MKL-DNN libraries
In R2021a, you can generate more efficient C++ code for layers and networks that use these newer
versions of ARM Compute and Intel MKL-DNN libraries:

• ARM Compute library for computer vision and machine learning, version 20.02.1. See https://
developer.arm.com/ip-products/processors/machine-learning/compute-library.

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN) v1.4. See https://01.org/dnnl.

See Prerequisites for Deep Learning with MATLAB Coder.

Compatibility Considerations
In R2021a, generation of C++ code that uses these versions of ARM Compute and Intel MKL-DNN
libraries is not supported:

• ARM Compute library for computer vision and machine learning, versions 18.05 and 18.08
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN) v1.0

Functionality being removed or changed
cnncodegen Function: Support for CPU targets to be removed
Warns

In a future release, the cnncodegen function will not generate C++ code for Intel and ARM CPU
targets. To generate C++ code for deep learning layers and networks for these targets, use the
codegen function.

See Code Generation for Deep Learning Networks with MKL-DNN and Code Generation for Deep
Learning Networks with ARM Compute Library.

R2021a

5-18

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://01.org/dnnl
https://www.mathworks.com/help/releases/R2021a/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

5-19

https://www.mathworks.com/support/bugreports/

R2020b

Version: 5.1

New Features

Bug Fixes

Compatibility Considerations

6

MATLAB Programming for Code Generation

Generate code for MATLAB code that accesses fields of a structure
array
In R2020b, you can generate code for MATLAB code that accesses field data by indexing into a
structure array. See Access Data in Structure Array (MATLAB).

Code generation supports field access of fixed-size structure arrays. horzcat containing field access of
variable-size structure arrays is also supported in the generated code.

Expansion of the structure array on the left side of the assignment is not supported in generated
code.

R2020b

6-2

https://www.mathworks.com/help/releases/R2020b/matlab/matlab_prog/access-data-in-a-structure-array.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/horzcat.html

Supported Functions

Expanded code generation support for eig function
New options of the eig function are supported for C/C++ code generation.

Compared to previous releases, code generation in R2020b supports these cases:

• Cholesky factorization specified as 'chol' for the symmetric generalized eigenvalue problem.
• If you specify the LAPACK library callback class, then the code generator supports these options:

• The 'balance' and 'nobalance' options for the standard eigenvalue problem. For example,
you can specify this syntax:

[V,D] = eig(A, balanceOption);

• The computation of left eigenvectors.

For more information, see eig, coder.LAPACKCallback, and LAPACK Calls in Generated Code.

Expanded code generation for datetime and duration arrays
In R2020b, code generation supports more MATLAB toolbox functions when you use datetime and
duration arrays.

The supported functions for datetime arrays are:

• colon
• datevec
• hms
• hour
• interp1
• max
• mean
• min
• minute
• posixtime
• repmat
• ymd

The supported functions for duration arrays are:

• ceil
• colon
• floor
• interp1
• intersect

 Supported Functions

6-3

https://www.mathworks.com/help/releases/R2020b/matlab/ref/eig.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.lapackcallback-class.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/lapack-calls-in-generated-code.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/colon.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datevec.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datetime.hms.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datetime.hour.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/interp1.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datetime.minute.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datetime.posixtime.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/repmat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/datetime.ymd.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ceil.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/colon.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/floor.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/interp1.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.intersect.html

• ismember
• issorted
• issortedrows
• linspace
• max
• mean
• median
• min
• mode
• repmat
• setdiff
• setxor
• sort
• sortrows
• std
• sum
• union
• unique

For more information, see Code Generation for Datetime Arrays and Code Generation for Duration
Arrays.

Expanded code generation for tables and timetables
In R2020b, code generation supports more capabilities and MATLAB toolbox functions when you use
tables and timetables.

Supported table and timetable capabilities are:

• Table and timetable variable names do not have to be valid MATLAB identifiers. The names must
be composed of ASCII characters, but can include any ASCII characters (such as commas, dashes,
and space characters).

• Timetables that have datetime vectors as row times.

The supported functions for tables are:

• addvars
• convertvars
• intersect
• ismember
• movevars
• removevars
• setdiff
• setxor

R2020b

6-4

https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.ismember.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/linspace.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/mode.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/repmat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setdiff.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setxor.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.sortrows.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/std.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/sum.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.union.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.unique.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-datetime-arrays.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-duration-arrays.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-duration-arrays.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.addvars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/convertvars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.intersect.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.ismember.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.movevars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.removevars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setdiff.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setxor.html

• union
• unique

The supported functions for timetables are:

• addvars
• cat
• convertvars
• horzcat
• intersect
• ismember
• movevars
• removevars
• retime
• setdiff
• setxor
• synchronize
• union
• unique

For more information, see Code Generation for Tables and Code Generation for Timetables.

Expanded code generation for categorical arrays
In R2020b, code generation supports more MATLAB toolbox functions when you use categorical
arrays.

The supported functions for categorical arrays are:

• addcats
• cat
• countcats
• eq
• ge
• gt
• horzcat
• histcounts
• intersect
• ismember
• le
• lt
• max
• mergecats

 Supported Functions

6-5

https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.union.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.unique.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.addvars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.cat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/convertvars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/horzcat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.intersect.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.ismember.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.movevars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/table.removevars.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/timetable.retime.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setdiff.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setxor.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/timetable.synchronize.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.union.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.unique.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-tables.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-timetables.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.addcats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.cat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.countcats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/eq.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ge.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/gt.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/horzcat.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/histcounts.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.intersect.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.ismember.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/le.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/lt.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.mergecats.html

• min
• ne
• removecats
• renamecats
• reordercats
• setcats
• setdiff
• setxor
• union
• unique
• vertcat

For more information, see Code Generation for Categorical Arrays.

Code generation for more MATLAB functions
• besselh
• besselk
• bessely
• getenv
• setenv
• matches
• pcg
• ordeig
• im2gray
• cmap2gray

Code generation for more toolbox functions
5G Toolbox

• generate
• networkTrafficFTP
• networkTrafficOnOff
• networkTrafficVoIP
• nrOFDMDemodulate
• nrOFDMInfo
• nrOFDMModulate
• nrPRACHOFDMInfo
• nrPRACHOFDMModulate
• nrResourceGrid
• nrTBS

R2020b

6-6

https://www.mathworks.com/help/releases/R2020b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ne.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.removecats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.renamecats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.reordercats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/categorical.setcats.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setdiff.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.setxor.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.union.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/double.unique.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/vertcat.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-categorical-arrays.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/besselh.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/besselk.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/bessely.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/getenv.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/setenv.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/matches.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/pcg.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ordeig.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/im2gray.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/cmap2gray.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/networktrafficonoff.generate.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/networktrafficftp.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/networktrafficonoff.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/networktrafficvoip.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrofdmdemodulate.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrofdminfo.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrofdmmodulate.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrprachofdminfo.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrprachofdmmodulate.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrresourcegrid.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrtbs.html

• nrULSCHDemultiplex
• nrULSCHMultiplex
• pcapngWriter
• pcapWriter
• write
• writeCustomBlock
• writeGlobalHeader
• writeInterfaceDescriptionBlock

Audio Toolbox

• acousticFluctuation
• audioDelta
• audioFeatureExtractor
• cepstralCoefficients
• vggish
• yamnet

Antenna Toolbox

• comm.Ray

Communications Toolbox

• arrayConfig
• bleAngleEstimate
• bleAngleEstimateConfig
• blePCAPWriter
• bluetoothFrequencyHop
• comm.ChannelFilter
• comm.Ray
• comm.RayTracingChannel
• getElementPosition
• getNumElements
• getPayloadLength
• getPhyConfigProperties
• nextHop
• pcapngWriter
• pcapWriter
• write of blePCAPWriter
• write of pcapWriter and pcapngWriter
• writeCustomBlock
• writeGlobalHeader

 Supported Functions

6-7

https://www.mathworks.com/help/releases/R2020b/5g/ref/nrulschdemultiplex.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/nrulschmultiplex.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapngwriter.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapwriter.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapwriter.write.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapngwriter.writecustomblock.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapwriter.writeglobalheader.html
https://www.mathworks.com/help/releases/R2020b/5g/ref/pcapngwriter.writeinterfacedescriptionblock.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/acousticfluctuation.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiodelta.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/audiofeatureextractor.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/cepstralcoefficients.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/vggish.html
https://www.mathworks.com/help/releases/R2020b/audio/ref/yamnet.html
https://www.mathworks.com/help/releases/R2020b/antenna/ref/comm.ray.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/arrayconfig.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/bleangleestimate.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/bleangleestimateconfig.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/blepcapwriter.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/bluetoothfrequencyhop.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/comm.channelfilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/comm.ray.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/comm.raytracingchannel-system-object.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/getelementposition.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/getnumelements.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/getpayloadlength.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/getphyconfigproperties.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/nexthop.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapngwriter.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapwriter.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/blepcapwriter.write.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapwriter.write.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapngwriter.writecustomblock.html
https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapwriter.writeglobalheader.html

• writeInterfaceDescriptionBlock

Computer Vision Toolbox

• estimateGeometricTransform2D
• estimateGeometricTransform3D
• insertObjectMask
• pcbin
• ransac

DSP System Toolbox

• getFrequencyVector

Fixed-Point Designer

• nnz

Image Processing Toolbox

• poly2label
• rgbwide2ycbcr
• ycbcr2rgbwide

Navigation Toolbox

• dynamicCapsuleList and all its object functions
• dynamicCapsuleList3D and its object functions addEgo, addObstacle, and checkCollision
• gnssSensor
• plan of plannerAStarGrid
• plannerAStarGrid
• referencePathFrenet and all its object functions
• stateSpaceSE3
• trajectoryGeneratorFrenet and its object function connect
• validatorOccupancyMap3D
• wheelEncoderAckermann
• wheelEncoderBicycle
• wheelEncoderDifferentialDrive
• wheelEncoderUnicycle

Optimization Toolbox

• fsolve
• lsqcurvefit
• lsqnonlin

R2020b

6-8

https://www.mathworks.com/help/releases/R2020b/comm/ref/pcapngwriter.writeinterfacedescriptionblock.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/estimategeometrictransform2d.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/estimategeometrictransform3d.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/insertobjectmask.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/pcbin.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/ransac.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.stft.getfrequencyvector.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/embedded.fi.nnz.html
https://www.mathworks.com/help/releases/R2020b/images/ref/poly2label.html
https://www.mathworks.com/help/releases/R2020b/images/ref/rgbwide2ycbcr.html
https://www.mathworks.com/help/releases/R2020b/images/ref/ycbcr2rgbwide.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist3d.addego.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist3d.addobstacle.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/dynamiccapsulelist.checkcollision.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/gnsssensor-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/plannerastargrid.plan.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/plannerastargrid.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/referencepathfrenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/statespacese3.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/trajectorygeneratorfrenet.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/trajectorygeneratorfrenet.connect.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/validatoroccupancymap3d.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderackermann-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderbicycle-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderdifferentialdrive-system-object.html
https://www.mathworks.com/help/releases/R2020b/nav/ref/wheelencoderunicycle-system-object.html
https://www.mathworks.com/help/releases/R2020b/optim/ug/fsolve.html
https://www.mathworks.com/help/releases/R2020b/optim/ug/lsqcurvefit.html
https://www.mathworks.com/help/releases/R2020b/optim/ug/lsqnonlin.html

Robotics System Toolbox

• analyticalInverseKinematics
• gazebogenmsg
• generateIKFunction
• interpolate
• manipulatorRRT
• packageGazeboPlugin
• plan
• shorten

Sensor Fusion and Tracking Toolbox

• copy
• geoTrajectory
• initsingerekf
• singer
• singerjac
• singermeas
• singermeasjac
• singerProcessNoise
• stateinfo
• trackerGridRFS

Signal Processing Toolbox

See “C/C++ Code Generation Support: Generate code for feature extraction, signal measurements,
and vibration analysis” (Signal Processing Toolbox).

Wavelet Toolbox

• ewt
• iswt
• iswt2
• scaleSpectrum
• swt
• swt2
• timeSpectrum
• wcoherence
• wdenoise2

WLAN Toolbox

• generate
• getNumPostFECPaddingBits

 Supported Functions

6-9

https://www.mathworks.com/help/releases/R2020b/robotics/ref/analyticalinversekinematics.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazebogenmsg.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/analyticalinversekinematics.generateikfunction.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.interpolate.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/packagegazeboplugin.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.plan.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.shorten.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/insfiltererrorstate.copy.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/geotrajectory-system-object.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/initsingerekf.initsingerekf.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/singer.singer.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/singerjac.singerjac.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/singermeas.singermeas.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/singermeasjac.singermeasjac.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/singerprocessnoise.singerprocessnoise.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/errorstateimugpsfuser.stateinfo.html
https://www.mathworks.com/help/releases/R2020b/fusion/ref/trackergridrfs-system-object.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/ewt.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/iswt.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/iswt2.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/cwtfilterbank.scalespectrum.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/swt.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/swt2.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/cwtfilterbank.timespectrum.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/wcoherence.html
https://www.mathworks.com/help/releases/R2020b/wavelet/ref/wdenoise2.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/networktrafficftp.generate.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlanhemuconfig.getnumpostfecpaddingbits.html

• interpretHESIGBCommonBits
• interpretHESIGBUserBits
• networkTrafficFTP
• networkTrafficOnOff
• networkTrafficVoIP
• pcapngWriter
• pcapWriter
• scramblerRange
• wlanInterpretScramblerState
• wlanNonHTDataBitRecover
• wlanNonHTOFDMDemodulate
• write
• writeCustomBlock
• writeGlobalHeader
• writeInterfaceDescriptionBlock

R2020b

6-10

https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlanherecoveryconfig.interprethesigbcommonbits.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlanherecoveryconfig.interprethesigbuserbits.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/networktrafficftp.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/networktrafficonoff.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/networktrafficvoip.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapngwriter.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapwriter.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlannonhtconfig.scramblerrange.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlaninterpretscramblerstate.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlannonhtdatabitrecover.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/wlannonhtofdmdemodulate.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapwriter.write.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapngwriter.writecustomblock.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapwriter.writeglobalheader.html
https://www.mathworks.com/help/releases/R2020b/wlan/ref/pcapngwriter.writeinterfacedescriptionblock.html

Generated Code Improvements

Generate MEX function that has C++ classes for MATLAB classes
In R2020b, when you generate C++ MEX functions, the default behavior of the code generator
produces C++ classes for the classes in your MATLAB code. These include all MATLAB classes such
as value classes, handle classes, and system objects. In previous releases, if you set the target
language for MEX code generation as C++, the code generator produced structures for the classes in
your MATLAB code.

The generated C++ MEX code is now closer to the generated C++ standalone code, which also
contains C++ classes for MATLAB classes. This MEX function enables you to create a more reliable
prototype that you can test inside the MATLAB environment before you generate and deploy
standalone C++ code.

See Generate C++ Classes for MATLAB Classes.

Compatibility Considerations
You can change the default behavior of the code generator to produce C++ code that contains
structures for MATLAB classes, similar to previous releases. Do one of the following:

• In a coder.MexCodeConfig object, set TargetLang to 'C++' and CppPreserveClasses to
false.

• In the MATLAB Coder app, in the Generate step, set Language to C++. In the project build
settings, on the Code Appearance tab, clear the Generate C++ classes from MATLAB classes
check box.

Improved organization of generated C++ code into namespaces
In R2020b, if you generate C++ code from MATLAB code, the code generator default behavior is to:

• Place all MathWorks code (for example, code for the sparse data type) into a separate namespace
that has the name coder. To change this default name of the namespace (for example, to
myNamespace), do one of the following:

• In a code configuration object, set the parameter CppNamespaceForMathworksCode to
'myNamespace'.

• In the MATLAB Coder app, in the Generate Code step, on the Code Appearance tab, set the
Namespace for MathWorks Code parameter to myNamespace.

• Generate C++ namespaces for packages in your MATLAB code. If your MATLAB code has nested
packages (for example, pkg1 inside pkg2), the generated namespaces have the same nesting.

The code generated for classes and enumerations that are inside packages now uses shorter
names for the classes and enumerations, which are identical to their names in the MATLAB code.

When creating packages for your MATLAB code that are intended for code generation, follow these
guidelines:

• Do not create a package that has the name 'coder'.

 Generated Code Improvements

6-11

https://www.mathworks.com/help/releases/R2020b/coder/ug/generate-c-classes-from-matlab-classes.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.mexcodeconfig.html

• If you set the CppNamespaceForMathworksCode property (or the equivalent parameter in the
app) to a nondefault name, do not create a package that has that name.

Namespaces help organize your code into logical parts, prevent name collisions, and enable you to
more easily integrate your generated C++ code into a larger C++ project. Namespaces also increase
compliance with the MISRA C++ standards for safety-critical code.

See Organize Generated C++ Code into Namespaces.

Compatibility Considerations
In previous releases, the generated C++ code was not partitioned into these namespaces. So, in
R2020b, the code generated for MATLAB entry-point functions that have input or output arguments
that are classes or enumerations in packages has a different interface compared to previous releases.
To generate code similar to code generated in previous releases:

• To disable creating a separate namespace for MathWorks code, do one of the following:

• In a code configuration object, set the parameter CppNamespaceForMathworksCode to the
empty character vector ''.

• In the MATLAB Coder app, clear the Namespace for MathWorks Code parameter.
• To disable converting MATLAB packages to C++ namespaces, do one of the following:

• In a code configuration object, set the parameter CppPackagesToNamespaces to false.
• In the MATLAB Coder app, in the Generate Code step, on the Code Appearance tab, clear

the MATLAB package to C++ namespace check box.

Improved identifier names in generated C++ code
In R2020b, the generated C++ code has these naming improvements:

• Contains overloaded functions or methods that have the same name but support multiple
signatures. In previous releases, if an overloaded function fcn in your MATLAB code supported
two different signatures, the code generator produced two different C++ functions, such as
b_fcn and c_fcn.

• Reuses the same identifier name across different namespace hierarchies. For example, the same
type name myType can appear in two different namespace hierarchies with top-level namespaces
myNamespace_1 and myNamespace_2.

In previous releases, the code generator did not reuse an identifier name. For example, if the type
name myType appeared in a namespace hierarchy that started with myNamespace_1, the same
name did not appear in a different hierarchy that started with myNamespace_2. Instead, the type
name was renamed to something like b_myType.

• Certain classes in the generated code have shorter names compared to previous releases:

• Code generated for the sparse data type contains the class sparse. In previous releases, this
class was named coder_internal_sparse.

• Code generated for an anonymous function contains the class anonymous_function. In
previous releases, this class was named coder_internal_anonymous_func.

• Code generated for a nested function contains the class nested_function. In previous
releases, this class was named coder_internal_nested_function.

R2020b

6-12

https://www.mathworks.com/help/releases/R2020b/coder/ug/organize-generated-c-code-into-namespaces.html

For more information on C++ language features in the generated code, see C++ Code Generation.

Compatibility Considerations
In previous releases, certain functions, classes, types, and so on were named differently compared to
R2020b. The exact differences are described in this release note.

Improved file partitioning for generated C++ code
In R2020b, type definition of a generated C++ class is placed in a header file with the same MATLAB
name as the class. The class implementations are placed in a separate cpp file. To integrate the
generated C++ classes with your custom code, the header files of the classes need to be included in
your code.

Compatibility Considerations
In previous releases, to integrate the generated code in your custom code, you had to include the
header file that contained the declarations of the generated functions that your custom code called.
In this release, for some rare cases, you might need to also include the header files that contain the
type definitions that the generated code uses.

Clearer pattern of ordering of local variable declarations
In R2020a, the order of local variable declarations in the generated C/C++ code did not follow an
obvious pattern. In R2020b, the grouping of local variable declarations in the generated C/C++ code
is by type and in order of decreasing array size. For variables and array of the same type and size, the
declarations are in alphabetical order.

For example, this table shows a sample of local variable declaration groupings in R2020a and
R2020b. The R2020b declarations follow a clear pattern making it easier to locate a variable
declaration.

 Generated Code Improvements

6-13

https://www.mathworks.com/help/releases/R2020b/coder/ug/cpp-code-generation.html

Sample Local Variable Declarations in
R2020a

Sample Local Variable Declarations in
R2020b

static boolean_T imgEdge[307200];
static uint8_T b_img2[307200];
static uint8_T label[307200];
static real32_T imgRect[230400];
static real32_T b_img[307200];
static real32_T img2[307200];;
int32_T b_r;
int32_T c;
int32_T i;
uint32_T q;
real32_T thresh;
real_T ex;
real_T pos;
boolean_T b_boundingbox_data[60];
int32_T c_boundingbox_data[60];
int32_T boundingbox_data[240];
uint8_T v_data[1];
uint8_T label_data[58564];
uint32_T points1[8];
real32_T tmp_data[8];
real32_T tform_T[9];
real32_T b_x[20];
real32_T e_BW[400];
real32_T f_BW[400];
real_T b_B[2];
real_T cor[9];
visioncodegen_BlobAnalysis_1 *obj;

static real32_T b_img[307200];
static real32_T img2[307200];
static real32_T imgRect[230400];
static uint8_T b_img2[307200];
static uint8_T label[307200];
static boolean_T imgEdge[307200];
visioncodegen_BlobAnalysis_1 *obj;
real_T cor[9];
real_T b_B[2];
real_T ex;
real_T pos;
int32_T boundingbox_data[240];
int32_T c_boundingbox_data[60];
int32_T b_r;
int32_T c;
int32_T i;
real32_T e_BW[400];
real32_T f_BW[400];
real32_T b_x[20];
real32_T tform_T[9];
real32_T tmp_data[8];
real32_T thresh;
uint32_T points1[8];
uint32_T q;
uint8_T label_data[58564];
uint8_T v_data[1];
boolean_T b_boundingbox_data[60];

R2020b

6-14

Code Generation Workflow

Reserve C/C++ identifier names by using coder.reservedName
In R2020b, you can generate code that does not use certain identifier names. You specify these names
by using the coder.reservedName function. Use this function in your MATLAB code to reserve
these identifier names for exclusive use in external C/C++ code that you want to integrate with the
generated code. If you get errors due to name collisions between the generated code and external
C/C++ code, use this functionality to resolve such errors.

To reserve identifier names name1, name1, and name3, include this function call in your MATLAB
code:

coder.reservedName('name1', 'name2', 'name3')

This code generation setting, that has existed in the previous releases, provides the same
functionality:

• In a code configuration object, the ReservedNameArray property
• Alternatively, in the MATLAB Coder app, on the Code Appearance tab, the Reserved names

parameter

Access license checkout information by using report information
object
In R2020b, the Summary property of the report information object has an additional property
ToolboxLicenses. This property is a string vector that indicates which toolbox licenses were
checked out during code generation. If you generate MEX code, these licenses are checked out again
when you load the MEX function.

For example, define the function foo that calls the iqr function.

function r = foo(x) %#codegen
r = iqr(x);
end

Generate MEX code by using the codegen command. Also, create a report information object info.

codegen foo -args {zeros(1,100)} -reportinfo info

Inspect the Summary property of the object info.

info.Summary

ans =

 Summary with properties:

 Success: true
 Date: '24-Apr-2020 04:36:51'
 OutputFile: 'C:\coder\R2020b\License discovery\foo_mex.mexw64'
 Processor: 'Generic->MATLAB Host Computer'
 Version: 'MATLAB Coder 5.0 (R2020b)'
 ToolboxLicenses: "statistics_toolbox"

 Code Generation Workflow

6-15

https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.function.coder.reservedname.html
https://www.mathworks.com/help/releases/R2020b/stats/prob.normaldistribution.iqr.html

The string vector info.Summary.ToolboxLicenses indicates that the Statistics and Machine
Learning Toolbox™ license was checked out during code generation. This license is checked out again
when you load the generated MEX function.

See Access Code Generation Report Information Programmatically and coder.ReportInfo
Properties.

Directly package generated standalone code by using codegen
command
In R2020b, you can use the codegen command with the -pacakge option to generate standalone
code and package the generated code files and their dependencies into a compressed ZIP file in a
single step. You can then use the ZIP file to relocate, unpack, and rebuild the code files in another
development environment.

For example, to generate a static C library for the MATLAB function foo and package the library
code and its dependencies into a ZIP file named foo.zip, run this command:

codegen -config:lib foo -package foo.zip

This packaging functionality is also provided by the packNGo function.

Query capability for target.get function
Use the target.get function to obtain a list of target feature objects that are saved in memory. You
can refine the query to list only objects with properties that match specified name-value pairs.

Previously, you used this function only to retrieve a specified target feature object from memory.

Intel C and C++ toolchain support for Windows
You can compile generated code by using Intel C and C++ compilers for Windows. R2020b supports:

• Intel Parallel Studio XE 2020 with Microsoft Visual Studio 2017, 2019
• Intel Parallel Studio XE 2019 with Microsoft Visual Studio 2015, 2017, 2019
• Intel Parallel Studio XE 2018 with Microsoft Visual Studio 2015, 2017, 2019

Support for Intel Parallel Studio XE 2017 is removed.

For more information, see Supported Compilers.

R2020b

6-16

https://www.mathworks.com/help/releases/R2020b/coder/ug/report-information-object.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.reportinfo-properties.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.reportinfo-properties.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/packngo.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/target.get.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Performance
Global Settings for Function Inlining: Fine-tune readability and speed
of generated code
Inlining is a technique that replaces a function call with the contents (body) of that function. Inlining
is a code optimization technique that eliminates the overhead of a function call, thereby improving
speed. But inlining can produce larger C/C++ code and reduce code readability.

In R2020b, these new inlining settings give you greater control over speed and readability of the
generated MEX and standalone C/C++ code.

Code Configuration
Parameter

Description Options

In a code configuration object:
InlineBetweenUserFunctio
ns

In the MATLAB Coder app: On
the All Settings tab, Inline
between user functions

Controls inlining behavior at all
call sites where a function that
you wrote calls another function
that you wrote

'Always' | 'Speed' (default) |
'Readability' | 'Never'

In a code configuration object:
InlineBetweenMathWorksFu
nctions

In the MATLAB Coder app: On
the All Settings tab, Inline
between MathWorks
functions

Controls inlining behavior at all
call sites where a MathWorks
function calls another
MathWorks function

'Always' | 'Speed' (default) |
'Readability' | 'Never'

In a code configuration object:
InlineBetweenUserAndMath
WorksFunctions

In the MATLAB Coder app: On
the All Settings tab, Inline
between user and
MathWorks functions

Controls inlining behavior at all
call sites where a function that
you wrote calls a MathWorks
function, or a MathWorks
function calls a function that
you wrote

'Always' | 'Speed' (default) |
'Readability' | 'Never'

Option descriptions:

• 'Always': Always performs inlining at a call site.
• 'Speed': Uses internal heuristics to determine whether to perform inlining at a call site. This

setting usually leads to highly optimized code. This setting is the default setting.
• 'Readability': Almost never inlines function calls, except for calls to very small functions.

Preserves modularity of code without sacrificing too much speed, whenever possible. Results in
highly readable code.

• 'Never': Never inlines function calls. Results in maximum readability. This setting might
significantly reduce the performance of the generated code.

You might have different speed and readability requirements for the code generated for functions that
you write and MathWorks functions. These new settings enable you to separately control the inlining

 Performance

6-17

behavior for these two parts of the generated code base and at the boundary between them. For
example, you might want to simultaneously:

• Preserve the modularity in the code that you write for better readability, even if that reduces the
speed of the generated code. For this behavior, set InlineBetweenUserFunctions to
'Readability'.

• Generate highly optimized code for MathWorks functions, even if that results in less readable code
because you are less likely to inspect this part of your code base. For this behavior, set
InlineBetweenMathWorksFunctions to 'Speed'.

• In the generated code, separate functions that you write and MathWorks functions so that the
generated code does not look very different from your MATLAB code. For this behavior, set
InlineBetweenUserAndMathWorksFunctions to 'Readability'.

Interaction with other existing inlining controls:

• The -O disable:inline option of the codegen command disables inlining between all
functions. This option is equivalent to setting all the three new parameters to 'Never'. If there is
a conflict, this option overrides the individual values of the three new parameters.

• The coder.inline directive placed inside the body of a MATLAB function overrides the effect of
the InlineBetweenUserFunctions, InlineBetweenMathWorksFunctions, and
InlineBetweenUserAndMathWorksFunctions parameters.

See Control Inlining to Fine-Tune Performance and Readability of Generated Code.

Compatibility Considerations
• Choosing nondefault values for the existing code configuration parameters InlineThreshold,

InlineThresholdMax, and InlineStackLimit now produces a warning during code
generation. For a call site, if there is a conflict between these nondefault values and the values of
the new parameters, the behavior of the code generator is determined by these nondefault values.
These three existing parameters will be removed in a future release.

• If you set the InlineBetweenUserFunctions, InlineBetweenMathWorksFunctions, and
InlineBetweenUserAndMathWorksFunctions parameters to their default values ('Speed'),
the code generator behaves the same as in previous releases. The exception to this rule is when
you use the -O disable:inline option with the codegen command. In previous releases, this
option disabled inlining only for calls between functions that you wrote and did not affect calls to
or from MathWorks functions. In R2020b, this option disables inlining for all function calls.

JIT support for half-precision floating-point data type
In R2020b, you can use Just-In-Time (JIT) compilation for MEX code generation with half-precision
floating-point data types in MATLAB.

R2020b

6-18

https://www.mathworks.com/help/releases/R2020b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/coder.inline.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/control-inlining-using-configuration-object.html

Deep Learning with MATLAB Coder

Deep Learning: Generate code for Long Short-Term Memory (LSTM)
layer
In R2020b, you can generate C++ code for an LSTM network, a stateful LSTM network, or a
bidirectional LSTM network that uses the Intel MKL-DNN library.

You can also generate C++ code for an LSTM network that has its the activation properties
(GetActivationFunction and SetActivationFunction) set to nondefault values in which the
generated code uses the ARM Compute library.

An LSTM layer learns long-term dependencies between time steps in time series and sequence data.
This layer performs additive interactions, which can help improve gradient flow over long sequences
during training. See lstmLayer, bilstmLayer, and Networks and Layers Supported for C++ Code
Generation.

Deep Learning: Generate code for custom layers
In R2020b, you can generate C++ code for custom deep learning layers that uses the Intel MKL-DNN
or the ARM Compute library.

See:

• Define Custom Deep Learning Layers (Deep Learning Toolbox)
• Define Custom Deep Learning Layer for Code Generation (Deep Learning Toolbox)
• Networks and Layers Supported for C++ Code Generation

Deep Learning: Generate code that uses Intel MKL-DNN library on
macOS platform
In R2020b, you can generate C++ code for deep learning layers and networks that uses the Intel
MKL-DNN library on the macOS platform. See Prerequisites for Deep Learning with MATLAB Coder.

Deep Learning: Generate code for additional layers
In R2020b, C++ code generation that uses the Intel MKL-DNN library supports these additional
layers:

• Dice pixel classification layer that provides a categorical label for each image pixel or voxel using
generalized Dice loss (dicePixelClassificationLayer)

• Focal loss layer that predicts object classes using focal loss (focalLossLayer)
• Gated recurrent unit (GRU) layer (gruLayer)
• Multiplication layer (multiplicationLayer)
• Box regression layer for Fast and Faster R-CNN (rcnnBoxRegressionLayer)
• Classification layer for region proposal networks (RPNs) (rpnClassificationLayer)
• Scaling layer for actor or critic network (scalingLayer)

 Deep Learning with MATLAB Coder

6-19

https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ug/define-custom-deep-learning-layers.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ug/define-custom-deep-learning-layer-for-code-generation.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.dicepixelclassificationlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.focallosslayer.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.grulayer.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.multiplicationlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.rcnnboxregressionlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.rpnclassificationlayer.html
https://www.mathworks.com/help/releases/R2020b/reinforcement-learning/ref/rl.layer.scalinglayer.html

• Sequence input layer (sequenceInputLayer)
• Softplus layer for actor or critic network (softplusLayer)
• Space to depth layer (spaceToDepthLayer)
• Word embedding layer that maps word indices to vectors (wordEmbeddingLayer)

In R2020b, C++ code generation with the ARM Compute library supports this additional layer:

• Dice pixel classification layer that provides a categorical label for each image pixel or voxel using
generalized Dice loss (dicePixelClassificationLayer)

• Focal loss layer that predicts object classes using focal loss (focalLossLayer)
• Gated recurrent unit (GRU) layer (gruLayer)
• Multiplication layer (multiplicationLayer)
• Box regression layer for Fast and Faster R-CNN (rcnnBoxRegressionLayer)
• Classification layer for region proposal networks (RPNs) (rpnClassificationLayer)
• Scaling layer for actor or critic network (scalingLayer)
• Softplus layer for actor or critic network (softplusLayer)
• Space to depth layer (spaceToDepthLayer)

Functionality being removed or changed
cnncodegen Function: Support for CPU targets to be removed
Behavior change in future release

In a future release, the cnncodegen function will not generate C++ code for Intel and ARM CPU
targets. To generate C++ code for deep learning layers and networks for these targets, use the
codegen function.

See Code Generation for Deep Learning Networks with MKL-DNN and Code Generation for Deep
Learning Networks with ARM Compute Library.

R2020b

6-20

https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.sequenceinputlayer.html
https://www.mathworks.com/help/releases/R2020b/reinforcement-learning/ref/rl.layer.softpluslayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.spacetodepthlayer.html
https://www.mathworks.com/help/releases/R2020b/textanalytics/ref/nnet.cnn.layer.wordembeddinglayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.dicepixelclassificationlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.focallosslayer.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.grulayer.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/nnet.cnn.layer.multiplicationlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.rcnnboxregressionlayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.rpnclassificationlayer.html
https://www.mathworks.com/help/releases/R2020b/reinforcement-learning/ref/rl.layer.scalinglayer.html
https://www.mathworks.com/help/releases/R2020b/reinforcement-learning/ref/rl.layer.softpluslayer.html
https://www.mathworks.com/help/releases/R2020b/vision/ref/nnet.cnn.layer.spacetodepthlayer.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2020b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2020b/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

6-21

https://www.mathworks.com/support/bugreports/

R2020a

Version: 5.0

New Features

Bug Fixes

Compatibility Considerations

7

MATLAB Programming for Code Generation

Generate code for half-precision floating-point data type
In R2020a, you can generate C/C++ code for half-precision floating-point data types in MATLAB.
Half-precision data types occupy only 16 bits of memory, but their floating-point representation
enables them to handle wider dynamic ranges than integer or fixed-point data types of the same size.

For a full list of features that support half-precision code generation, see half.

Code generation for datetime arrays
In R2020a, you can generate C/C++ code for datetime arrays. For more information, see Code
Generation for Datetime Arrays.

Code generation for timetables
In R2020a, you can generate C/C++ code for timetables that have duration vectors as row times.
For more information, see Code Generation for Timetables.

R2020a

7-2

https://www.mathworks.com/help/releases/R2020a/coder/ref/half.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/code-generation-for-datetime-arrays.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/code-generation-for-datetime-arrays.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/code-generation-for-timetables.html

Supported Functions

Code generation for more MATLAB functions
• array2timetable
• convhull
• datetime
• fscanf
• ischange
• isnat
• isregular
• NaT
• onCleanup
• smoothdata
• table2timetable
• timetable
• timetable2table
• topkrows

Code generation for more toolbox functions
5G Toolbox

• nrCORESETConfig
• nrPDCCHConfig
• nrPDCCHResources
• nrPDCCHSpace
• nrPDSCHConfig
• nrPDSCHDMRS
• nrPDSCHDMRSConfig
• nrPDSCHDMRSIndices
• nrPDSCHIndices
• nrPDSCHPTRS
• nrPDSCHPTRSConfig
• nrPDSCHPTRSIndices
• nrPDSCHReservedConfig
• nrPRACH
• nrPRACHConfig
• nrPRACHGrid
• nrPRACHIndices

 Supported Functions

7-3

https://www.mathworks.com/help/releases/R2020a/matlab/ref/array2timetable.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/convhull.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/datetime.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/fscanf.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ischange.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/datetime.isnat.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/timetable.isregular.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/nat.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/oncleanup.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/smoothdata.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/table2timetable.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/timetable.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/timetable2table.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/topkrows.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrcoresetconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdcchconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdcchresources.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdcchspace.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschdmrs.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschdmrsconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschdmrsindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschptrs.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschptrsconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschptrsindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpdschreservedconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrprach.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrprachconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrprachgrid.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrprachindices.html

• nrPUSCHConfig
• nrPUSCHPTRSIndices
• nrPUSCHPTRSConfig
• nrPUSCHPTRS
• nrPUSCHIndices
• nrPUSCHDMRSIndices
• nrPUSCHDMRSConfig
• nrPUSCHDMRS
• nrSearchSpaceConfig
• nrSRS
• nrSRSConfig
• nrSRSIndices

Audio Toolbox

• acousticLoudness
• acousticSharpness
• calibrateMicrophone
• detectSpeech
• phon2sone
• sone2phon

Automated Driving Toolbox

• cubicLaneBoundary
• findCubicLaneBoundaries
• findParabolicLaneBoundaries
• insertLaneBoundary
• parabolicLaneBoundary

Communications Toolbox

• bluetoothIdealReceiver
• bluetoothPhyConfig
• bluetoothWaveformConfig
• bluetoothWaveformGenerator
• channelDelay
• cranerainpl

Computer Vision Toolbox

See “Code Generation: Generate C/C++ code using MATLAB Coder” (Computer Vision Toolbox).

R2020a

7-4

https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschptrsindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschptrsconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschptrs.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschdmrsindices.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschdmrsconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrpuschdmrs.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrsearchspaceconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrsrs.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrsrsconfig.html
https://www.mathworks.com/help/releases/R2020a/5g/ref/nrsrsindices.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/acousticloudness.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/acousticsharpness.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/calibratemicrophone.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/detectspeech.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/phon2sone.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/sone2phon.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/cubiclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findcubiclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/findparaboliclaneboundaries.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/insertlaneboundary.html
https://www.mathworks.com/help/releases/R2020a/driving/ref/paraboliclaneboundary.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/bluetoothidealreceiver.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/bluetoothphyconfig.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/bluetoothwaveformconfig.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/bluetoothwaveformgenerator.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/channeldelay.html
https://www.mathworks.com/help/releases/R2020a/comm/ref/cranerainpl.html

DSP System Toolbox

• dsp.SOSFilter

Fixed-Point Designer

• nextpow2
• normalizedReciprocal

Image Processing Toolbox

• imbilatfilt

Instrument Control Toolbox

• maskWrite
• modbus
• read from a MODBUS server
• write to a MODBUS server
• writeread

Model Predictive Control Toolbox

• mpcActiveSetOptions
• mpcActiveSetSolver
• mpcInteriorPointOptions
• mpcInteriorPointSolver
• mpcmoveCodeGeneration
• nlmpcmoveCodeGeneration

Navigation Toolbox

• copy of plannerRRT and plannerRRTStar
• getParticles
• monteCarloLocalization
• plan of plannerHybridAStar
• plan of plannerRRT and plannerRRTStar
• plannerHybridAStar
• plannerRRT
• plannerRRTStar
• validatorVehicleCostmap

Optimization Toolbox

See “Code Generation for Quadratic Problems: Generate C code for problems with linear constraints
and quadratic objectives” (Optimization Toolbox).

 Supported Functions

7-5

https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.sosfilter-system-object.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/embedded.fi.nextpow2.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/normalizedreciprocal.html
https://www.mathworks.com/help/releases/R2020a/images/ref/imbilatfilt.html
https://www.mathworks.com/help/releases/R2020a/instrument/maskwrite.html
https://www.mathworks.com/help/releases/R2020a/instrument/modbus.html
https://www.mathworks.com/help/releases/R2020a/instrument/modbus.read.html
https://www.mathworks.com/help/releases/R2020a/instrument/modbus.write.html
https://www.mathworks.com/help/releases/R2020a/instrument/serialport.writeread.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetoptions.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetsolver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcinteriorpointoptions.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcinteriorpointsolver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcmovecodegeneration.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/nlmpcmovecodegeneration.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrt.copy.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/getparticles.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/montecarlolocalization-system-object.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerhybridastar.plan.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrt.plan.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerhybridastar.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrt.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/plannerrrtstar.html
https://www.mathworks.com/help/releases/R2020a/nav/ref/validatorvehiclecostmap.html

Phased Array System Toolbox

• blkdiagbfweights
• cranerainpl

Robotics System Toolbox

• checkCollision
• collisionBox
• collisionCylinder
• collisionMesh
• collisionSphere

Sensor Fusion and Tracking Toolbox

• angvel
• deleteBranch, initializeBranch of trackerTOMHT
• deleteTrack, initializeTrack of trackerPHD
• residual, residualmag, residualaltimeter of ahrs10filter
• residual, residualaccel, residualgps, residualmag, residualgyro of insfilterAsync
• residual, residualgps, residualmvo of insfilterErrorState
• trackGOSPAMetric

SerDes Toolbox

• impulse2pulse
• optPulseMetric
• prbs
• pulse2impulse
• pulse2wave
• wave2pulse

Signal Processing Toolbox

See “C/C++ Code Generation Support: Generate code for time-frequency analysis, feature extraction,
spectral analysis, multirate signal processing, and filter design” (Signal Processing Toolbox).

Wavelet Toolbox

• dualtree
• dualtree2
• dwpt
• haart
• haart2
• hht
• idualtree

R2020a

7-6

https://www.mathworks.com/help/releases/R2020a/phased/ref/blkdiagbfweights.html
https://www.mathworks.com/help/releases/R2020a/phased/ref/cranerainpl.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/checkcollision.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionbox.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisioncylinder.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionmesh.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionsphere.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/quaternion.angvel.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/trackertomht.deletebranch.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/trackertomht.initializebranch.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/deletetrack.deletetrack.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/trackerphd.initializetrack.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/ahrs10filter.residual.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/ahrs10filter.residualmag.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/ahrs10filter.residualaltimeter.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfilterasync.residual.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfilterasync.residualaccel.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfilterasync.residualgps.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfilterasync.residualmag.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfilterasync.residualgyro.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfiltererrorstate.residual.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfiltererrorstate.residualgps.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/insfiltererrorstate.residualmvo.html
https://www.mathworks.com/help/releases/R2020a/fusion/ref/trackgospametric-system-object.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/impulse2pulse.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/optpulsemetric.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/prbs.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/pulse2impulse.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/pulse2wave.html
https://www.mathworks.com/help/releases/R2020a/serdes/ref/wave2pulse.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/dualtree.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/dualtree2.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/dwpt.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/haart.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/haart2.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/hht.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/idualtree.html

• idualtree2
• idwpt
• ihaart
• ihaart2
• modwtvar
• qbiorthfilt
• qorthwavf
• wdenoise

WLAN Toolbox

• getTRSConfiguration
• wlanHETBConfig

 Supported Functions

7-7

https://www.mathworks.com/help/releases/R2020a/wavelet/ref/idualtree2.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/idwpt.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/ihaart.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/ihaart2.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/modwtvar.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/qbiorthfilt.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/qorthwavf.html
https://www.mathworks.com/help/releases/R2020a/wavelet/ref/wdenoise.html
https://www.mathworks.com/help/releases/R2020a/wlan/ref/wlanhetbconfig.gettrsconfiguration.html
https://www.mathworks.com/help/releases/R2020a/wlan/ref/wlanhetbconfig.html

Generated Code Improvements
Generate C++ classes from MATLAB classes
In R2020a, when you generate C++ libraries or executables, the default behavior of the code
generator is to produce C++ classes for the classes in your MATLAB code. These include all MATLAB
classes such as value classes, handle classes, and system objects. In previous releases, if you set the
target language for standalone code generation as C++, the code generator produced structures for
the classes in your MATLAB code.

See Generate C++ Classes for MATLAB Classes.

Compatibility Considerations
While attempting to generate standalone code that contains C++ classes for MATLAB classes, you
might get a warning message if both of these conditions are true:

• You choose to generate reentrant code by enabling the MultiInstanceCode parameter in a code
configuration object, or by enabling the Generate re-entrant code parameter in the MATLAB
Coder app.

• The destructor of a class in your MATLAB code has a persistent variable or calls another function
that declares and uses a persistent variable.

In such situations, to generate code that contains C++ classes for MATLAB classes, disable the
MultiInstanceCode or the Generate re-entrant code parameter.

Alternatively, you can change the default behavior of the code generator to produce C++ code that
contains structures for MATLAB classes. Do one of the following:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set TargetLang to 'C++' and CppPreserveClasses to
false.

• In the MATLAB Coder app, in the Generate step, set Language to C++. In the project build
settings, on the Code Appearance tab, clear the Generate C++ classes from MATLAB classes
check box.

Use dynamically allocated C++ arrays in generated function interfaces
In most cases, when you generate code for a MATLAB function that accepts or returns an array, there
is an array at the interface of the generated C/C++ function. For an array size that is unknown at
compile time, or whose bound exceeds a predefined threshold, the memory for the generated array is
dynamically allocated on the heap. In R2020a, if you choose C++ as the target language for code
generation, the generated code implements such dynamically allocated arrays as a C++ class
template named coder::array.

The coder::array template is defined in a header file named coder_array.h in the build folder.
To use dynamically allocated arrays in your custom C++ code (for example, a custom main function)
that you want to integrate with the generated code, include the coder_array.h header file in your
custom .cpp files.

To learn how to use the coder::array template, see Use Dynamically Allocated C++ Arrays in the
Generated Function Interfaces.

R2020a

7-8

https://www.mathworks.com/help/releases/R2020a/coder/ug/generate-c-classes-from-matlab-classes.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/use-dynamically-allocated-cpps-arrays-in-generated-function-interfaces.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/use-dynamically-allocated-cpps-arrays-in-generated-function-interfaces.html

Compatibility Considerations
In previous releases, the generated C++ code implemented dynamically allocated arrays by using the
C style emxArray data structure. In your custom C++ code that you integrated with the generated
code, you used the API for creating and allocating emxArray data structures. In R2020a, to change
the default behavior of the code generator and produce emxArray data structures in the generated C
++ code, do one of the following:

• In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to
'C'.

• In the MATLAB Coder app, on the Memory tab, set Dynamic memory allocation interface to
Use C style EmxArray.

Generate code that uses the C++11 standard math library
In R2020a, you can generate C++ libraries and executables that use the C++11 (ISO) or ISO®/IEC
14882:2011(E) standard math library by doing one of the following:

• Use the codegen command with the -lang:c++ and -std:c++11 options.
• In a configuration object for standalone code generation (coder.CodeConfig or

coder.EmbeddedCodeConfig), set the Targetlang parameter to 'C++' and the
TargetlangStandard parameter to 'C++11 (ISO)'.

• In the MATLAB Coder app, in the Generate step, set Language to C++. In the project build
settings, on the Custom Code tab, set the Standard math library parameter to C++11 (ISO).

See Change the Standard Math Library.

Manage memory for threadprivate variables in generated C++ code
In the Open Multiprocessing (Open MP) application interface, each thread has its own copy of a
variable that is declared as threadprivate. The memory for a threadprivate variable is allocated on the
heap and must be freed by calling its destructor at the end of the thread execution. When you
generate code for parfor loops that uses the Open MP interface, the generated code can contain
threadprivate variables if either of these conditions is true:

• Your MATLAB code contains persistent variables.
• You set the maximum stack usage parameter to a low value.

In such cases, if you generate standalone C++ code, the generated initialize and terminate functions
contain code that manages memory for the threadprivate variables. For each copy of a threadprivate
variable, the initialize function uses the new operator to allocate memory. If the variable has a default
value, the function also initializes the value of each copy to the default value. The terminate function
uses the delete operator to free the memory for each copy at the end of the execution.

Generated C++ MEX code also uses the same constructs to manage memory for threadprivate
variables.

The generated code allocates memory to all threads that are available for the Open MP application in
your system, even if the generated code uses only a subset of these threads. This behavior can
potentially incur memory overhead and reduce the performance of generated code that contains
threadprivate variables.

 Generated Code Improvements

7-9

https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.mexcodeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/standard-math-libraries.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/persistent.html

The generated standalone code automatically includes a call to the initialize function at the beginning
of the entry-point functions. To make sure that the memory allocated to threadprivate variables is
properly freed, call the terminate function after you call the generated entry-point functions for the
last time. See Use Generated Initialize and Terminate Functions.

Generate C++ code that complies with MISRA C++:2008 Rule 3-4-1
In R2020a, generated C++ code contains variable declarations that have minimized block scope.
These variable declarations increase the likelihood of generating C++ code that is compliant with the
Rule 3-4-1 of the MISRA C++:2008 guidelines.

This table shows the declaration of variables in the generated C++ code in R2019b and R2020a. In
R2020a generated code, the variable declaration has minimum block scope. The minimum block
scope reduces the visibility of these variables and improves compliance with MISRA C++.

MATLAB Code R2019b Generated Code R2020a Generated Code
function y1 = minimalScopingExample(a,b)
%#codegen

for count = 1:10
 if(count > 3)
 myVar = 1;
 elseif(count > 7)
 temp = b;
 b = a;
 a = temp;
 myVar = -1;
 else
 myVar = 0;
 end
 y1= max(b,myVar);

end
end

double minimalScopingExample(double a, double b)
{
 double b_y1;
 int count;
 int u1;
 double temp;
 for (count = 0; count < 10; count++) {
 if (count + 1 > 3) {
 u1 = 1;
 } else if (count + 1 > 7) {
 temp = b;
 b = a;
 a = temp;
 u1 = -1;
 } else {
 u1 = 0;
 }

 b_y1 = u1;
 if (b > b_y1) {
 b_y1 = b;
 }
 }

 return b_y1;
}

double minimalScopingExample(double a, double b)
{
 double b_y1;
 for (int count = 0; count < 10; count++) {
 int u1;
 if (count + 1 > 3) {
 u1 = 1;
 } else if (count + 1 > 7) {
 double temp;
 temp = b;
 b = a;
 a = temp;
 u1 = -1;
 } else {
 u1 = 0;
 }

 b_y1 = u1;
 if (b > b_y1) {
 b_y1 = b;
 }
 }

 return b_y1;
}

Generate one MEX function that supports multiple signatures
In R2020a, you can generate one MEX function that supports multiple signatures for the same entry-
point function in code generation. This one MEX function reduces the overhead involved in
generating separate MEX functions for each signature of your entry-point function. The generated
MEX function works with all the signatures provided during code generation. For more information,
see Generate One MEX Function That Supports Multiple Signatures.

R2020a

7-10

https://www.mathworks.com/help/releases/R2020a/coder/ug/use-generated-initialize-and-terminate-functions.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/mex-generation-for-multiple-signatures.html

Code Generation Workflow

Coder Type Editor: Create and edit input types interactively
When generating C/C++ code at the command line, you can specify the type, size, and complexity of
the input arguments of your MATLAB entry-point functions by using coder.Type objects. In R2020a,
you can create and edit coder.Type objects interactively by using the Coder Type Editor. To launch
the Coder Type Editor, run this command at the MATLAB command line:

coderTypeEditor

See Create and Edit Input Types by Using the Coder Type Editor and coderTypeEditor.

Intel C and C++ toolchain support for Windows
You can compile generated code by using Intel C and C++ compilers for Windows. R2020a supports:

• Intel Parallel Studio XE 2017 with Microsoft Visual Studio 2015, 2017
• Intel Parallel Studio XE 2018 with Microsoft Visual Studio 2015, 2017
• Intel Parallel Studio XE 2019 with Microsoft Visual Studio 2015, 2017, 2019

For more information, see Supported Compilers.

 Code Generation Workflow

7-11

https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.type-class.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/define-and-edit-input-properties-by-using-the-coder-type-editor.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/codertypeeditor.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Performance

Default code generation setting optimizes build to minimize run time
In R2020a, the default compiler optimization setting for standalone code generation optimizes build
to minimize the run time of the generated executable. In previous releases, the default compiler
setting optimized build to minimize the build time.

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), the BuildConfiguration parameter has the default value
'Faster Runs'.

• In the MATLAB Coder app, on the Hardware tab, the Build Configuration parameter has the
default value Faster Runs.

Compatibility Considerations
• In R2020a, the build time for the generation of C/C++ libraries or executables from MATLAB code

can be longer compared to previous releases. To shorten the build time, change the value of the
build configuration parameter to 'Faster Builds'.

• Compared to the 'Faster Builds' setting, 'Faster Runs' activates more compiler
optimizations and can expose more bugs in your third-party C/C++ compiler. To eliminate build
errors caused by such bugs, try to generate code again with the build configuration parameter set
to 'Faster Builds'.

Improved performance of code generated for fast Fourier transform
(FFT) functions
Compared to previous releases, the generated code in R2020a can have improved performance in
these cases:

• Code generated for fft2, fftn, ifft2, and ifftn that uses FFTW library calls
• Standalone code (that does not use FFTW library calls) generated for fast Fourier transform

functions with real inputs of even length

Improved code quality for functions that allocate handle objects
In previous releases, if your MATLAB function created multiple instances of a handle class, the
generated code contained a separate local buffer variable for each instance of the handle class. In
R2020a, the generated code contains a single array of buffers.

In previous releases, if several instances of the handle class were passed to another function in the
MATLAB code, the generated code also passed pointers to the corresponding buffers. In R2020a, the
generated code passes a single pointer to the array of buffers.

As a result of these changes, if you allocate a large number of handle objects in a function and then
pass them to another function in your MATLAB code, the generated code passes a single pointer
instead of passing a pointer for each handle object. This code pattern increases the efficiency of the
generated code.

R2020a

7-12

https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2020a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ifftn.html

MATLAB Code R2019b Generated Code R2020a Generated Code
classdef A < handle
 properties
 property
 end
end

function result = foo(arg)
[x, y] = baz(arg);
result = x.property -...
 y.property

function [x, y] = baz(arg)
coder.inline('never')
a = A;
a.property = arg;
b = A;
b.property = arg * 2;
if arg > 0
 x = a;
 y = b;
else
 x = b;
 y = a;
end

typedef struct {
 double property;
} A;

double foo(double arg)
{
 A lobj_0;
 A lobj_1;
 A *x;
 A *y;
 baz(arg, &lobj_0, &lobj_1,
 &x, &y);
 return x->property -
 y->property;
}

void baz(double arg,
A *iobj_0, A *iobj_1,
A **x, A **y)
{
 iobj_1->property = arg;
 iobj_0->property =
 arg * 2.0;
 if (arg > 0.0) {
 *x = iobj_1;
 *y = iobj_0;
 } else {
 *x = iobj_0;
 *y = iobj_1;
 }
}

typedef struct {
 double property;
} A;

double foo(double arg)
{
 A lobj_0[2];
 A *x;
 A *y;
 baz(arg, &lobj_0[0], &x,
 &y);
 return x->property -
 y->property;
}

void baz(double arg,
A *iobj_0, A **x, A **y)
{
 *y = &iobj_0[0];
 iobj_0[0].property = arg;
 iobj_0[1].property = arg *
 2.0;
 if (arg > 0.0) {
 *x = *y;
 *y = &iobj_0[1];
 } else {
 *x = &iobj_0[1];
 }
}

In R2019b, the generated function foo declared two local buffer variables lobj_0 and lobj_1 for
the two allocations of the handle class A. Also, pointers to these two variables were passed as
additional parameters to baz. In R2020a, foo declares a single array of buffers lobj_0[2], and a
single pointer to this array is passed to baz.

 Performance

7-13

Deep Learning with MATLAB Coder

Deep Learning: Generate code for Long Short-Term Memory (LSTM)
layer
In R2020a, you can generate C++ code for an LSTM network, a stateful LSTM network, or a
bidirectional LSTM network that uses the ARM Compute library. An LSTM layer learns long-term
dependencies between time steps in time series and sequence data. This layer performs additive
interactions, which can help improve gradient flow over long sequences during training.

See lstmLayer, bilstmLayer, and Networks and Layers Supported for C++ Code Generation.

Deep Learning: Generate code for more layers, networks, and classes
Additional Layers

In R2020a, C++ code generation with the ARM Compute library supports these additional layers:

• Anchor box layer for object detection (anchorBoxLayer)
• Bidirectional Long Short-Term Memory (BiLSTM) layer (bilstmLayer)
• Concatenation layer (concatenationLayer)
• Layer that applies 2-D cropping to the input (crop2dLayer)
• Exponential linear unit (ELU) layer (eluLayer)
• 2-D global max pooling layer (globalMaxPooling2dLayer)
• Long Short-Term Memory (LSTM) layer (lstmLayer)
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer)
• Sequence input layer (sequenceInputLayer)
• SSD merge layer for object detection (ssdMergeLayer)
• Word embedding layer that maps word indices to vectors (wordEmbeddingLayer)

In R2020a, C++ code generation with the Intel MKL-DNN library supports this additional layer:

• Anchor box layer for object detection (anchorBoxLayer)
• Concatenation layer (concatenationLayer)
• Exponential linear unit (ELU) layer (eluLayer)
• 2-D global max pooling layer (globalMaxPooling2dLayer)
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer)
• SSD merge layer for object detection (ssdMergeLayer)

Additional Networks

In R2020a, C++ code generation with the ARM Compute library or the Intel MKL-DNN library
supports these additional networks:

• Pretrained DarkNet-19 and DarkNet-53 convolutional neural networks (darknet19 and
darknet53)

R2020a

7-14

https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/nnet.cnn.layer.anchorboxlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.concatenationlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.crop2dlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.elulayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.globalmaxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.sequenceinputlayer.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/nnet.cnn.layer.ssdmergelayer.html
https://www.mathworks.com/help/releases/R2020a/textanalytics/ref/nnet.cnn.layer.wordembeddinglayer.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/nnet.cnn.layer.anchorboxlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.concatenationlayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.elulayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nnet.cnn.layer.globalmaxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/nnet.cnn.layer.ssdmergelayer.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/darknet19.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/darknet53.html

• Pretrained DenseNet-201 convolutional neural network (densenet201)
• Pretrained Inception-ResNet-v2 convolutional neural network (inceptionresnetv2)
• Pretrained NASNet-Large convolutional neural network (nasnetlarge)
• Pretrained NASNet-Mobile convolutional neural network (nasnetmobile)
• Pretrained ResNet-18 convolutional neural network (resnet18)
• Pretrained Xception convolutional neural network (xception)

Additional classes

In R2020a, C++ code generation with the ARM Compute library or the Intel MKL-DNN library
supports this additional class:

• ssdObjectDetector

See Networks and Layers Supported for C++ Code Generation.

Deep Learning: Generate code that uses newer versions of ARM
Compute and Intel MKL-DNN libraries
In R2020a, you can generate more efficient C++ code for layers and networks that use these newer
versions of ARM Compute and Intel MKL-DNN libraries:

• ARM Compute library for computer vision and machine learning, version 19.05. See https://
developer.arm.com/ip-products/processors/machine-learning/compute-library.

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN) v1.0. See https://01.org/dnnl.

See Prerequisites for Deep Learning with MATLAB Coder.

Compatibility Considerations
In R2020a, generation of C++ code that uses these versions of ARM Compute and Intel MKL-DNN
libraries is not supported:

• ARM Compute library for computer vision and machine learning, version 18.03
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN) v0.14

 Deep Learning with MATLAB Coder

7-15

https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/densenet201.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/inceptionresnetv2.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nasnetlarge.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/nasnetmobile.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/resnet18.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/xception.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/ssdobjectdetector.html
https://www.mathworks.com/help/releases/R2020a/coder/ug/networks-and-layers-supported-for-c-code-generation.html
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://01.org/dnnl
https://www.mathworks.com/help/releases/R2020a/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2020a

7-16

https://www.mathworks.com/support/bugreports/

R2019b

Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

8

MATLAB Programming for Code Generation

Code generation for tables
In R2019b, you can generate C/C++ code for tables. For more information, see Code Generation for
Tables.

Code generation for duration arrays
In R2019b, you can generate C/C++ code for duration arrays. For more information, see Code
Generation for Duration Arrays.

Code generation for hexadecimal and binary literals
In R2019b, you can generate C/C++ code for MATLAB hexadecimal and binary literals. The literals
appear as integers in the generated code. In certain situations, the code generator might perform
optimizations that remove these literals from the generated code.

For more information, see Hexadecimal and Binary Values (MATLAB).

R2019b

8-2

https://www.mathworks.com/help/releases/R2019b/coder/ug/code-generation-for-tables.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/code-generation-for-tables.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/code-generation-for-duration-arrays.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/code-generation-for-duration-arrays.html
https://www.mathworks.com/help/releases/R2019b/matlab/matlab_prog/specify-hexadecimal-and-binary-numbers.html

Supported Functions

Code generation for more MATLAB functions
• array2table
• cell2table
• datevec
• days
• duration
• fgetl
• fgets
• fillmissing
• fileread
• height
• histcounts2
• hms
• hours
• islocalmax
• islocalmin
• ismissing
• matchpairs
• milliseconds
• minutes
• newline
• read
• rmmissing
• rmoutliers
• seconds
• standardizeMissing
• struct2table
• table
• table2array
• table2cell
• table2struct
• tcpclient
• width
• write
• years

 Supported Functions

8-3

https://www.mathworks.com/help/releases/R2019b/matlab/ref/array2table.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/cell2table.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/datevec.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.days.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/fgetl.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/fgets.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/fillmissing.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/fileread.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/height.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/histcounts2.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/datetime.hms.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.hours.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/islocalmax.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/islocalmin.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/ismissing.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/matchpairs.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.milliseconds.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.minutes.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/newline.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/tcpclient.read.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/rmmissing.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/rmoutliers.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.seconds.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/standardizemissing.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/struct2table.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/table.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/table2array.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/table2cell.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/table2struct.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/tcpclient.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/width.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/tcpclient.write.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/duration.years.html

Code generation for more toolbox functions
5G Toolbox

• nrCarrierConfig
• nrChannelEstimate
• nrCSIRS
• nrCSIRSConfig
• nrCSIRSIndices
• nrTimingEstimate

Audio Toolbox

• audioPluginGridLayout
• audioTimeScaler
• designAuditoryFilterBank
• pinknoise
• shiftPitch
• stretchAudio

Automated Driving Toolbox

• acfObjectDetectorMonoCamera
• birdsEyeView
• imageToVehicle of birdsEyeView
• segmentLaneMarkerRidge
• transformImage of birdsEyeView
• vehicleToImage of birdsEyeView

Communications Toolbox

• bleATTPDU
• bleATTPDUConfig
• bleATTPDUDecode
• bleChannelSelection
• bleGAPDataBlock
• bleGAPDataBlockConfig
• bleGAPDataBlockDecode
• bleIdealReceiver
• bleL2CAPFrame
• bleL2CAPFrameConfig
• bleL2CAPFrameDecode
• bleLLAdvertisingChannelPDU
• bleLLAdvertisingChannelPDUConfig

R2019b

8-4

https://www.mathworks.com/help/releases/R2019b/5g/ref/nrcarrierconfig.html
https://www.mathworks.com/help/releases/R2019b/5g/ref/nrchannelestimate.html
https://www.mathworks.com/help/releases/R2019b/5g/ref/nrcsirs.html
https://www.mathworks.com/help/releases/R2019b/5g/ref/nrcsirsconfig.html
https://www.mathworks.com/help/releases/R2019b/5g/ref/nrcsirsindices.html
https://www.mathworks.com/help/releases/R2019b/5g/ref/nrtimingestimate.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audioplugingridlayout.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/audiotimescaler-system-object.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/designauditoryfilterbank.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/pinknoise.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/shiftpitch.html
https://www.mathworks.com/help/releases/R2019b/audio/ref/stretchaudio.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/acfobjectdetectormonocamera.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.imagetovehicle.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/segmentlanemarkerridge.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.transformimage.html
https://www.mathworks.com/help/releases/R2019b/driving/ref/birdseyeview.vehicletoimage.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/bleattpdu.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/bleattpduconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/bleattpdudecode.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blechannelselection-system-object.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blegapdatablock.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blegapdatablockconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blegapdatablockdecode.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/bleidealreceiver.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blel2capframe.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blel2capframeconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blel2capframedecode.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blelladvertisingchannelpdu.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blelladvertisingchannelpduconfig.html

• bleLLAdvertisingChannelPDUDecode
• bleLLControlPDUConfig
• bleLLDataChannelPDU
• bleLLDataChannelPDUConfig
• bleLLDataChannelPDUDecode
• bleWaveformGenerator
• gsmCheckTimeMask
• gsmDownlinkConfig
• gsmFrame
• gsmInfo
• gsmUplinkConfig

Computer Vision Toolbox

See “Code Generation: Generate C/C++ code using MATLAB Coder” (Computer Vision Toolbox).

Image Processing Toolbox

• imregcorr

Navigation Toolbox

• cart2frenet
• frenet2cart
• nav.StateSpace
• nav.StateValidator
• plan
• stateSpaceDubins
• stateSpaceReedsShepp
• stateSpaceSE2
• trajectoryOptimalFrenet
• validatorOccupancyMap

Optimization Toolbox

See fmincon Code Generation: Generate C code for nonlinear constrained optimization (requires
MATLAB Coder) (Optimization Toolbox).

Phased Array System Toolbox

• backscatterBicyclist
• clusterDBSCAN
• discoverClusters
• estimateEpsilon
• getNumScatterers

 Supported Functions

8-5

https://www.mathworks.com/help/releases/R2019b/comm/ref/blelladvertisingchannelpdudecode.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blellcontrolpduconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blelldatachannelpdu.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blelldatachannelpduconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blelldatachannelpdudecode.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/blewaveformgenerator.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/gsmchecktimemask.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/gsmdownlinkconfig.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/gsmframe.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/gsminfo.html
https://www.mathworks.com/help/releases/R2019b/comm/ref/gsmuplinkconfig.html
https://www.mathworks.com/help/releases/R2019b/images/ref/imregcorr.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/trajectoryoptimalfrenet.cart2frenet.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/trajectoryoptimalfrenet.frenet2cart.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/nav.statespace-class.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/nav.statevalidator-class.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/trajectoryoptimalfrenet.plan.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacedubins.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacereedsshepp.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/statespacese2.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/trajectoryoptimalfrenet.html
https://www.mathworks.com/help/releases/R2019b/nav/ref/validatoroccupancymap.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/backscatterbicyclist.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/clusterdbscan-system-object.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/clusterdbscan.clusterdbscan.discoverclusters.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/clusterdbscan.clusterdbscan.estimateepsilon.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/backscatterbicyclist.getnumscatterers.html

• move of backscatterBicyclist
• ompdecomp
• omphybweights
• reflect of backscatterBicyclist

Robotics System Toolbox

• ackermannKinematics
• bicycleKinematics
• differentialDriveKinematics
• jointSpaceMotionModel
• taskSpaceMotionModel
• unicycleKinematics

Sensor Fusion and Tracking Toolbox

• complementaryFilter
• ctrect
• ctrectcorners
• ctrectjac
• ctrectmeas
• ctrectmeasjac
• fuserSourceConfiguration
• gmphd
• initcagmphd
• initctgmphd
• initctrectgmphd
• initcvgmphd
• objectTrack
• toStruct
• trackFuser
• trackOSPAMetric

Signal Processing Toolbox

These Signal Processing Toolbox™ functions now support C/C++ code generation:

• Time-Frequency Analysis — fsst, ifsst, tfridge, wvd, and xwvd
• Spectral Analysis of Nonuniformly Sampled Signals — plomb
• Transforms — dftmtx and rceps
• Digital Filtering — eqtflength, fftfilt, and tf2ss
• Waveform Generation — chirp, diric, gmonopuls, and sawtooth
• Spectral Windows — chebwin

R2019b

8-6

https://www.mathworks.com/help/releases/R2019b/phased/ref/backscatterbicyclist.move.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/ompdecomp.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/omphybweights.html
https://www.mathworks.com/help/releases/R2019b/phased/ref/backscatterbicyclist.reflect.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/ackermannkinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/bicyclekinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/differentialdrivekinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/jointspacemotionmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/taskspacemotionmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/unicyclekinematics.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/complementaryfilter-system-object.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/ctrect.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/ctrectcorners.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/ctrectjac.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/ctrectmeas.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/ctrectmeasjac.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/fusersourceconfiguration.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/gmphd.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/gmphd.initcagmphd.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/gmphd.initctgmphd.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/gmphd.initctrectgmphd.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/gmphd.initcvgmphd.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/objecttrack.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/objecttrack.tostruct.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/trackfuser-system-object.html
https://www.mathworks.com/help/releases/R2019b/fusion/ref/trackospametric-system-object.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/fsst.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/ifsst.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/tfridge.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/wvd.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/xwvd.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/plomb.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/dftmtx.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/rceps.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/eqtflength.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/fftfilt.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/tf2ss.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/chirp.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/diric.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/gmonopuls.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/sawtooth.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/chebwin.html

Statistics and Machine Learning Toolbox

• See Generate C/C++ code for probability distribution functions (requires MATLAB Coder)
(Statistics and Machine Learning Toolbox)

• See “saveLearnerForCoder and loadLearnerForCoder Functions: Save and load machine learning
models for code generation” (Statistics and Machine Learning Toolbox)

Wavelet Toolbox

• filterbank of shearletSystem
• framebounds of shearletSystem
• isheart2
• mdwtdec
• mdwtrec
• meyeraux
• numshears
• shearletSystem
• sheart2

WLAN Toolbox

• wlanAPEPLength
• wlanHESIGBCommonBitRecover
• wlanHESIGBUserBitRecover
• wlanPSDULength

 Supported Functions

8-7

https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.filterbank.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.framebounds.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.isheart2.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/mdwtdec.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/mdwtrec.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/meyeraux.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.numshears.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.html
https://www.mathworks.com/help/releases/R2019b/wavelet/ref/shearletsystem.sheart2.html
https://www.mathworks.com/help/releases/R2019b/wlan/ref/wlanapeplength.html
https://www.mathworks.com/help/releases/R2019b/wlan/ref/wlanhesigbcommonbitrecover.html
https://www.mathworks.com/help/releases/R2019b/wlan/ref/wlanhesigbuserbitrecover.html
https://www.mathworks.com/help/releases/R2019b/wlan/ref/wlanpsdulength.html

Generated Code Improvements

Generate C++ code that has more C++ language and object-oriented
features
In R2019b, you can generate C++ code with more C++ language features. Your generated C++ code
can appear more aligned with what is expected from the C++ language. You can more easily
integrate your generated C++ code into existing C++ projects. You can now generate C++ code:

• In a namespace. Namespaces enable you to more easily integrate your generated C++ code into a
larger C++ project. Namespaces also increase compliance with the MISRA C++ standards for
safety-critical code. See C++ Code Generation.

• With an object-oriented interface. You call the generated entry-point functions as class methods.
The methods for each class instance are thread-safe and reentrant. The generated class
constructor and destructor automatically perform initialization and termination, for example,
when memory must be allocated and freed. See Generate C++ Code with Class Interface.

• That uses more C++-specific libraries, such as cstddef and cstdlib. This usage improves
MISRA C++ compliance.

Choose the style of generated #include guards
To prevent compilation errors due to multiple inclusion, the code generator produces #include
guards in the generated header files. In R2019b, you can choose to generate the #include guards as
#pragma once constructs. In previous releases, the code generator produced only #ifndef
constructs. If distinct header files in your code project use the same preprocessor macros, then
generate code with #pragma once.

To change the header guard style:

• From the command line, set the HeaderGuardStyle property of your code generation
configuration object. For example:

cfg = coder.config('lib');
cfg.HeaderGuardStyle = 'UsePragmaOnce';

• From the app, at the Generate Code step, in More Settings, Code Appearance, set the Header
guard style to Use pragma once.

C strings for null-terminated MATLAB strings
In R2019b, to improve the readability of the generated C/C++ code, the code generator generates C
strings for null-terminated MATLAB strings and character row vectors instead of character arrays.

An example of generated code in R2019a and R2019b is in this table.

R2019b

8-8

https://www.mathworks.com/help/releases/R2019b/coder/ug/cpp-code-generation.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/generate-cpp-code-with-class-interface.html

MATLAB Code R2019a Generated Code R2019b Generated Code
function t = charArrayNullAtEnd()
 t = ['Hello', 0];
end

void charArrayNullAtEnd(char t[6])
{
 int i0;
 static const char cv0[6] = {'H','e','l','l','o','\x00'};
 for (i0 = 0; i0 < 6; i0++) {
 t[i0] = cv0[i0];
 }
}

void charArrayNullAtEnd(char t[6])
{
 int i;
 static const char cv[6] = "Hello";
 for (i = 0; i < 6; i++) {
 t[i] = cv[i];
 }
}

For more information, see Generate C/C++ Strings from MATLAB Strings and Character Row
Vectors.

Improved naming for generated temporary variables
In R2019b, you get improved naming for generated temporary variables that increases the readability
of the generated C/C++ code. The naming is independent across different subfunctions. As a result,
the generated C/C++ code varies less when there is a small change in the corresponding MATLAB
code. For example, adding a new subfunction in the MATLAB code does not change the variable
names in the generated C/C++ code that correspond to the existing subfunctions.

The table shows the generated code in R2019a and R2019b. In R2019b generated code, the
temporary variable name starts with i instead of i0 and is independent across subfunctions.

MATLAB Code R2019a Generated Code R2019b Generated Code
function m = foo(q,n)
 m = q(1:n)*q(n:-1:1)+ sub1(q,n);
end

function y = sub1(q,n)
 coder.inline('never');
 y = q(1:n);
end

static void sub1(const emxArray_real_T*q,
 double n, emxArray_real_T*y)
{
 int loop_ub;
 int i4;
 /* Temporary variable*/
...

void foo(const emxArray_real_T*q, double n,
double m_data[], int m_size[2])
{
 int i0; /* Temporary variable*/
 int i1;
 int i2;
...

static void sub1(const emxArray_real_T*q,
 double n, emxArray_real_T*y)
{
 int loop_ub;
 int i;
 /* Temporary variable*/
...

void foo(const emxArray_real_T*q, double n,
double m_data[], int m_size[2])
{
 int i; /* Temporary variable*/
 int i1;
 int i2;
...

 Generated Code Improvements

8-9

https://www.mathworks.com/help/releases/R2019b/coder/ug/c-strings-for-null-terminated-matlab-strings.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/c-strings-for-null-terminated-matlab-strings.html

Code Generation Workflow

MATLAB Coder features in MATLAB Online
In R2019b, you can use most of the MATLAB Coder features through your web browser for teaching,
learning, and convenient lightweight access. To access these features, sign in with your MathWorks
account. For information about license requirements, visit the MATLAB Online product page.

Certain MATLAB Coder desktop features are not available in MATLAB Online. See Specifications and
Limitations in the MATLAB Online product page.

Automatically call initialize function from entry-point functions in the
generated code
While generating standalone code, the code generator produces an initialize function that initializes
the data used by the entry-point functions. In past releases, you had to manually call the initialize
function before invoking the entry-point functions. In R2019b, the code generator includes a call to
the initialize function at the beginning of the entry-point functions. In the generated code, the
initialize function is called automatically only once, even when there are multiple entry-point
functions.

The code generator includes a call to the initialize function at the beginning of the generated entry-
point functions by default. To generate code that does not automatically call the initialize function, do
one of the following:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set RunInitializeFcn to false.

• In the MATLAB Coder app, on the All Settings tab, set Automatically run the initialize
function to No.

See Use Generated Initialize and Terminate Functions.

Compatibility Considerations
Compared to previous releases, if you generate code for an entry-point MATLAB function foo, the
generated files foo.c, foo_data.c, foo_initialize.c, and foo_terminate.c now contain an
additional boolean isInitialized_foo. The generated code uses this variable to make sure that
the initialize function foo_initialize is called automatically exactly once.

To restore the old behavior of the code generator, disable the option to automatically call the initialize
function in the generated code.

Access code insights and build logs programmatically by using the
report information object
In R2019b, the coder.ReportInfo object contains two new properties:

• The CodeInsights property contains messages about potential issues in the generated code
including potential differences in behavior from MATLAB code and potential row-major issues.
These messages also appear in the code generation report Code Insights tab.

R2019b

8-10

https://www.mathworks.com/products/matlab-online.html
https://www.mathworks.com/products/matlab-online/limitations.html
https://www.mathworks.com/products/matlab-online/limitations.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/use-generated-initialize-and-terminate-functions.html

• The BuildLogs property contains the build logs produced during code generation. The build logs
contain compilation and linking errors and warnings. These messages also appear in the code
generation report Build Logs tab.

You can use the report information object to programmatically access this information. For example,
you can display the code insights at the MATLAB command line. To perform this action, in your build
script, access the CodeInsights property.

For more information, see Access Code Generation Report Information Programmatically and
coder.ReportInfo Properties.

Convert codegen command to equivalent MATLAB Coder project
In R2019b, you can use codegen with the -toproject option to convert a codegen command to an
equivalent MATLAB Coder project file. You can then generate code from the project file by using
another codegen command or the MATLAB Coder app.

For example, to convert a codegen command with input arguments input_arguments to the
project file myProject.prj, run:

codegen input_arguments -toproject myProject.prj

Input arguments to codegen include:

• Names of entry-point functions
• Input type definitions specified by using the -args option
• Code generation options, including parameters specified in configuration objects
• Names of custom source files to include in the generated code

You can also use the -toproject option to convert an incomplete codegen command to a project
file. For example, to create a project file myProjectTemplate.prj that contains only the code
generation parameters stored in the configuration object cfg, run:

codegen -config cfg -toproject myProjectTemplate.prj

myProjectTemplate.prj does not contain specifications of entry-point functions or input types.
You cannot generate code from this project file. You can open myProjectTemplate.prj in the
MATLAB Coder app and use it as a template to create full project files that you can use to generate
code.

Running codegen with the -toproject option does not generate code. It creates only the project
file.

See Convert codegen Command to Equivalent MATLAB Coder Project.

Create code configuration object from MATLAB Coder project
In R2019b, you can use the -toconfig option with the coder command to export the code
configuration settings stored in a MATLAB Coder project file to a code configuration object. For
example, executing the following command returns a code configuration object cfg corresponding to
myProject.prj.

cfg = coder('-toconfig','myProject.prj')

 Code Generation Workflow

8-11

https://www.mathworks.com/help/releases/R2019b/coder/ug/report-information-object.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.reportinfo-properties.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/convert-codegen-command-to-equivalent-matlab-coder-project.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.html

This table specifies which code configuration object is returned for different project file settings.

Project File Settings in MATLAB Coder App Code Configuration Object Returned
Build type is MEX. coder.MexCodeConfig
Build type is static library, dynamically linked
library, or executable.

One of the following conditions is true:

• You do not have Embedded Coder.
• You have Embedded Coder. On the All

Settings tab, Use Embedded Coder
features is set to No.

coder.CodeConfig

Build type is static library, dynamically linked
library, or executable.

You have Embedded Coder. On the All Settings
tab, Use Embedded Coder features is set to
Yes.

coder.EmbeddedCodeConfig

See Share Build Configuration Settings.

Export of hardware device data
R2019b provides the target.export function, which enables you to share hardware device data
across computers and users. For more information, see Export Hardware Device Data.

Data validation for hardware device features
R2019a introduced a new mechanism for registering hardware devices, which uses the target feature
classes, target.Processor and target.LanguageImplementation. R2019b exposes
target.Object, which is the base class for target feature classes. To validate the data integrity of
objects that belong to target feature classes, use the IsValid property or validate method.

Consider an example where you create a target.Processor object and associate an existing
language implementation with the object.
myProcessor = target.create('Processor');
myProcessor.LanguageImplementations = target.get('LanguageImplementation', ...
 'ARM Compatible-ARM Cortex');

To validate the created object, run myProcessor.IsValid or myProcessor.validate().
myProcessor.IsValid

ans =
 logical
 0

myProcessor.validate()

Error using target.Processor/validate
Target data validation failed.
* Undefined property "Name" in "Processor" object.
* Undefined identifier in "Processor" object.

The validation fails because these target.Processor properties are not specified:

R2019b

8-12

https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.mexcodeconfig.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/share-build-configuration-settings.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/target.export.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/register-new-hardware-devices.html#mw_42303f9f-3083-4da0-a83c-408a1c33f544
https://www.mathworks.com/help/releases/R2019b/coder/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/target.languageimplementation-class.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/target.object-class.html

• Name — Processor name
• Id — Object identifier

You can specify a processor name, which also specifies the object identifier.
myProcessor.Name = 'MyProcessor';

Check the validity of myProcessor.
myProcessor.IsValid

ans =
 logical
 1

The validity of the object is established.

When you use the target.add function to register a target feature object, the software also checks
the validity of the object.

For more information, see Register New Hardware Devices.

Upgrade of hardware device definitions
R2019b provides the target.upgrade function, which enables you to upgrade existing definitions of
hardware devices. The function uses a specific upgrade procedure to create objects from definitions
in current data artifacts. By default, the function also creates the file,
registerUpgradedTargets.m. To register the upgraded definitions, run
registerUpgradedTargets.m.

For more information, see Upgrade Data Definitions for Hardware Devices.

Compatibility Considerations
Support for the use of rtwTargetInfo.m files to register hardware devices will be removed in a
future release. To update the registration mechanism, use the target.upgrade function.

 Code Generation Workflow

8-13

https://www.mathworks.com/help/releases/R2019b/coder/ug/register-new-hardware-devices.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/target.upgrade.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/register-new-hardware-devices.html#mw_625cf1f3-b82f-401e-bf0f-d0568597c2db

Performance

Improved function inlining readability and predictability
In R2019b, the code generator uses improved heuristics for function inlining. The generated code is
more stable and robust to changes in MATLAB code that can influence function inlining. You can
generate more consistent C/C++ code from different iterations of MATLAB code.

For more information on function inlining, see Control Inlining.

R2019b

8-14

https://www.mathworks.com/help/releases/R2019b/coder/ug/control-inlining-using-configuration-object.html

Deep Learning with MATLAB Coder

Deep Learning: Generate code for more layers and networks
Additional Layers

In R2019b, MATLAB Coder supports C++ code generation for additional deep learning layers.

Layer Description ARM Compute Library Intel MKL-DNN
Custom output layers All output layers

including custom
classification or
regression output layers
created by using
nnet.layer.Classif
icationLayer or
nnet.layer.Regress
ionLayer.

For an example showing
how to define a custom
classification output
layer and specify a loss
function, see Define
Custom Classification
Output Layer (Deep
Learning Toolbox).

For an example showing
how to define a custom
regression output layer
and specify a loss
function, see Define
Custom Regression
Output Layer (Deep
Learning Toolbox).

Yes Yes

globalAveragePooli
ng2dLayer

Global average pooling
layer for spatial data

Yes Yes

groupedConvolution
2dLayer

2-D grouped
convolutional layer

Yes

If you specify an integer
for numGroups, then
the value must be less
than or equal to 2.

Yes

nnet.keras.layer.F
lattenCStyleLayer

Flattens activations into
1-D assuming C-style
(row-major) order

Yes Yes

 Deep Learning with MATLAB Coder

8-15

https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-classification-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-classification-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-classification-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-regression-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-regression-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ug/define-custom-regression-output-layer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.globalaveragepooling2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.globalaveragepooling2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.groupedconvolution2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.groupedconvolution2dlayer.html

Layer Description ARM Compute Library Intel MKL-DNN
nnet.keras.layer.G
lobalAveragePoolin
g2dLayer

Global average pooling
layer for spatial data

Yes Yes

nnet.keras.layer.S
igmoidLayer

Sigmoid activation layer Yes Yes

nnet.keras.layer.T
anhLayer

Hyperbolic tangent
activation layer

Yes Yes

nnet.keras.layer.Z
eroPadding2dLayer

Zero padding layer for
2-D input

Yes Yes

nnet.onnx.layer.El
ementwiseAffineLay
er

Layer that performs
element-wise scaling of
the input followed by an
addition

Yes Yes

nnet.onnx.layer.Fl
attenLayer

Flatten layer for
ONNX™ network

Yes Yes

tanhLayer Hyperbolic tangent
(tanh) layer

Yes Yes

transposedConv2dLa
yer

Transposed 2-D
convolution layer

Yes Yes

YOLOv2OutputLayer Output layer for YOLO
v2 object detection
network

Yes Yes

YOLOv2ReorgLayer Reorganization layer for
YOLO v2 object
detection network

Yes Yes

YOLOv2TransformLay
er

Transform layer for
YOLO v2 object
detection network

Yes Yes

Additional Pretrained Networks

In R2019b, MATLAB Coder supports C++ code generation for this network.

Network
Name

Description ARM Compute
Library

Intel MKL-DNN

MobileNet-v2 MobileNet-v2 convolutional neural network. For
the pretrained MobileNet-v2 model, see
mobilenetv2.

Yes Yes

YOLO v2 Object Detector

In R2019b, you can generate code for an object detector trained by using a YOLO v2 network. This
class is now supported for code generation for these target deep learning libraries.

R2019b

8-16

https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/transposedconv2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/transposedconv2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/mobilenetv2.html

Class Description ARM Compute Library Intel MKL-DNN
yolov2ObjectDetect
or

• Only the detect
method of the
yolov2ObjectDete
ctor is supported
for code generation.

• The roi argument to
the detect method
must be a code
generation constant
(coder.const())
and a 1x4 vector.

• Only the
Threshold,
SelectStrongest,
MinSize, and
MaxSize name-value
pairs for detect are
supported.

• The labels output
of detect is
returned as a cell
array of character
vectors, for example,
{'car','bus'}.

Yes Yes

 Deep Learning with MATLAB Coder

8-17

https://www.mathworks.com/help/releases/R2019b/vision/ref/yolov2objectdetector.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/yolov2objectdetector.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/yolov2objectdetector.detect.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2019b

8-18

https://www.mathworks.com/support/bugreports/

R2019a

Version: 4.2

New Features

Bug Fixes

Compatibility Considerations

9

MATLAB Programming for Code Generation

Code generation support for class properties with string scalar initial
values
In R2019a, you can generate code for a function that uses a class property whose initial value is a
string scalar. For example:

classdef myClass
 properties
 prop = "myString";
 end
end

function out = useClass
obj = myClass;
out = obj.prop;
end

Code generation behavior change for character vector or string scalar
input to ismethod
Starting in R2019a, specifying the first input (obj) to ismethod as a character vector or string
scalar results in a code generation error.

Compatibility Considerations
In previous releases, if you specified the first input to ismethod as a character vector or string
scalar, the code generator treated the value as the name of a class.

Code generation for categorical arrays
In R2019a, you can generate C/C++ code for categorical arrays. For more information, see Code
Generation for Categorical Arrays.

R2019a

9-2

https://www.mathworks.com/help/releases/R2019a/matlab/ref/ismethod.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/code-generation-for-categorical-arrays.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/code-generation-for-categorical-arrays.html

Supported Functions

Code generation for sparse matrix inputs for more functions
These functions now support sparse matrix inputs for code generation:

• chol
• tril
• triu

Expanded code generation support for the vecdim input argument
Code generation now supports the vecdim input argument for these functions:

• all
• any
• max
• mean
• median
• min
• mode
• prod
• std
• sum
• var

Code generation for more MATLAB functions
• arrayfun
• accumarray
• bounds
• categorical
• categories
• cellstr
• cospi
• dec2base
• discretize
• hasFrame
• ind2rgb
• iscalendarduration
• iscategory
• isdatetime

 Supported Functions

9-3

https://www.mathworks.com/help/releases/R2019a/matlab/ref/chol.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/tril.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/triu.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/all.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/any.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/mode.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/prod.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/std.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/sum.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/var.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/arrayfun.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/accumarray.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/bounds.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.categories.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/cellstr.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/double.cospi.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/dec2base.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/double.discretize.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/videoreader.hasframe.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/ind2rgb.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/iscalendarduration.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.iscategory.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/isdatetime.html

• isduration
• isordinal
• isprotected
• isundefined
• normalize
• pause
• read of VideoReader
• readFrame of VideoReader
• tic
• toc
• qrupdate
• rat
• sinpi
• VideoReader

Code generation for more 5G Toolbox functions
• getTransportBlock
• nrDLSCH
• nrDLSCHDecoder
• nrLowPAPRS
• nrPUCCH0
• nrPUCCH1
• nrPUCCH2
• nrPUCCH3
• nrPUCCH4
• nrPUCCHHoppingInfo
• nrPUCCHPRBS
• nrPUSCH
• nrPUSCHCodebook
• nrPUSCHDecode
• nrPUSCHDescramble
• nrPUSCHPRBS
• nrPUSCHScramble
• nrTransformPrecode
• nrTransformDeprecode
• nrUCIDecode
• nrUCIEncode
• nrULSCH
• nrULSCHDecoder

R2019a

9-4

https://www.mathworks.com/help/releases/R2019a/matlab/ref/isduration.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.isordinal.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.isprotected.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/categorical.isundefined.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/double.normalize.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/pause.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/videoreader.read.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/videoreader.readframe.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/tic.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/toc.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/qrupdate.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/rat.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/double.sinpi.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/videoreader.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulsch.gettransportblock.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrdlsch-system-object.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrdlschdecoder-system-object.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrlowpaprs.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucch0.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucch1.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucch2.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucch3.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucch4.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucchhoppinginfo.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpucchprbs.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpusch.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpuschcodebook.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpuschdecode.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpuschdescramble.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpuschprbs.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrpuschscramble.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrtransformprecode.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrtransformdeprecode.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrucidecode.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nruciencode.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulsch-system-object.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulschdecoder-system-object.html

• nrULSCHInfo
• resetSoftBuffer
• setTransportBlock

Code generation for more Audio Toolbox functions
• gtcc
• harmonicRatio
• imdct
• kbdwin
• mdct
• melSpectrogram
• spectralCentroid
• spectralCrest
• spectralDecrease
• spectralEntropy
• spectralFlatness
• spectralFlux
• spectralKurtosis
• spectralRolloffPoint
• spectralSkewness
• spectralSlope
• spectralSpread
• erb2hz
• bark2hz
• mel2hz
• hz2erb
• hz2bark
• hz2mel
• octaveFilterBank
• gammatoneFilterBank

Code generation for more Automated Driving Toolbox functions
The following Automated Driving Toolbox™ path planning functions and objects now support code
generation:

• vehicleDimensions
• inflationCollisionChecker
• vehicleCostmap
• checkFree

 Supported Functions

9-5

https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulschinfo.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulschdecoder.resetsoftbuffer.html
https://www.mathworks.com/help/releases/R2019a/5g/ref/nrulsch.settransportblock.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/gtcc.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/harmonicratio.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/imdct.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/kbdwin.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/mdct.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/melspectrogram.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralcentroid.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralcrest.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectraldecrease.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralentropy.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralflatness.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralflux.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralkurtosis.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralrolloffpoint.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralskewness.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralslope.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/spectralspread.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/erb2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/bark2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/mel2hz.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2erb.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2bark.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/hz2mel.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/octavefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2019a/audio/ref/gammatonefilterbank-system-object.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehicledimensions.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.costmap.inflationcollisionchecker.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkfree.html

• checkOccupied
• getCosts
• setCosts
• pathPlannerRRT
• plan
• driving.Path
• interpolate
• driving.DubinsPathSegment
• driving.ReedsSheppPathSegment
• checkPathValidity
• smoothPathSpline

Code generation for more Communications Toolbox functions
• algintrlv
• algdeintrlv
• comm.DecisionFeedbackEqualizer
• comm.DPD
• comm.DPDCoefficientEstimator
• comm.LinearEqualizer
• intrlv
• deintrlv
• matintrlv
• matdeintrlv
• helscanintrlv
• helscandeintrlv
• pammod
• genqammod
• pamdemod

Code generation for more Computer Vision Toolbox functions
• acfObjectDetector
• detect of acfObjectDetector
• pointCloud
• findNearestNeighbors
• findNeighborsInRadius
• findPointsInROI
• removeInvalidPoints
• select

R2019a

9-6

https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.checkoccupied.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.getcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/vehiclecostmap.setcosts.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/pathplannerrrt.plan.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.path.interpolate.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.dubinspathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/driving.reedsshepppathsegment.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/checkpathvalidity.html
https://www.mathworks.com/help/releases/R2019a/driving/ref/smoothpathspline.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/algintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/algdeintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/comm.decisionfeedbackequalizer-system-object.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/comm.dpd-system-object.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/comm.dpdcoefficientestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/comm.linearequalizer-system-object.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/intrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/deintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/matintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/matdeintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/helscanintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/helscandeintrlv.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/pammod.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/genqammod.html
https://www.mathworks.com/help/releases/R2019a/comm/ref/pamdemod.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/acfobjectdetector.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/acfobjectdetector.detect.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.findnearestneighbors.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.findneighborsinradius.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.findpointsinroi.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.removeinvalidpoints.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pointcloud.select.html

• pcdownsample
• pcfitcylinder
• pcfitplane
• pcfitsphere
• pctransform
• pcregistercpd
• pcmerge
• pcdenoise
• pcnormals
• pcsegdist
• segmentLidarData
• ORBPoints
• detectORBFeatures
• disparityBM
• disparitySGM
• opticalFlow
• estimateFlow
• reset

Code generation for more DSP System Toolbox functions
• dsp.STFT
• dsp.ISTFT
• dsp.FourthOrderSectionFilter

Code generation for more Image Processing Toolbox functions
• affine3d
• inpaintCoherent
• rgb2lightness

Code generation for more Phased Array System Toolbox functions
• azelcut2pat
• clone
• move
• rcscylinder
• rcsdisc
• rcstruncone
• release
• reflect

 Supported Functions

9-7

https://www.mathworks.com/help/releases/R2019a/vision/ref/pcdownsample.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcfitcylinder.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcfitplane.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcfitsphere.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pctransform.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcregistercpd.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcmerge.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcdenoise.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcnormals.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/pcsegdist.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/segmentlidardata.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/orbpoints.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/detectorbfeatures.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/disparitybm.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/disparitysgm.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/opticalflowobject.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/opticalflowhs.estimateflow.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/opticalflowhs.reset.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.stft.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.istft.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.fourthordersectionfilter.html
https://www.mathworks.com/help/releases/R2019a/images/ref/affine3d.html
https://www.mathworks.com/help/releases/R2019a/images/ref/inpaintcoherent.html
https://www.mathworks.com/help/releases/R2019a/images/ref/rgb2lightness.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/azelcut2pat.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/clone.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/phased.backscatterpedestrian.move.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/rcscylinder.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/rcsdisc.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/rcstruncone.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/release.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/phased.backscatterpedestrian.reflect.html

• reset
• rotpat

Code generation for more Robotics System Toolbox functions
• robotics.LidarSLAM class and methods addScan, copy, removeLoopClosures, and

scansAndPoses
• robotics.PoseGraph object, robotics.PoseGraph3D object and functions

addRelativePose, edges, edgeConstraints, and findEdgeID, nodes, and removeEdges
• optimizePoseGraph
• robotics.DubinsConnection object and connect function
• robotics.DubinsPathSegment object and interpolate function
• robotics.ReedsSheppConnection object
• robotics.ReedsSheppPathSegment object
• uavOrbitFollower System object™
• bsplinepolytraj
• cubicpolytraj
• quinticpolytraj
• rottraj
• transformtraj
• trapveltraj

Code generation for more Sensor Fusion and Tracking Toolbox
functions
• ahrs10filter
• append of ggiwphd
• AsyncMARGGPSFuser
• altimeterSensor
• clone of ggiwphd
• correct of ahrs10filter
• correct of AsyncMARGGPSFuser
• correct of ErrorStateIMUGPSFuser
• correct of ggiwphd
• correctjpda
• correctUndetected of ggiwphd
• ErrorStateIMUGPSFuser
• extractState of ggiwphd
• fuseaccel of AsyncMARGGPSFuser
• fusealtimeter of ahrs10filter
• fusegps of AsyncMARGGPSFuser

R2019a

9-8

https://www.mathworks.com/help/releases/R2019a/phased/ref/reset.html
https://www.mathworks.com/help/releases/R2019a/phased/ref/rotpat.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam-class.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam.addscan.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam.copy.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam.removeloopclosures.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam.scansandposes.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.posegraph.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.posegraph3d.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/addrelativepose.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/edges.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/edgeconstraints.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/findedgeid.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/nodes.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/removeedges.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/optimizeposegraph.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.dubinsconnection.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.dubinsconnection.connect.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.dubinspathsegment.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.dubinspathsegment.interpolate.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/reedssheppconnection.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.reedsshepppathsegment.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/uavorbitfollower-system-object.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/bsplinepolytraj.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/cubicpolytraj.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/quinticpolytraj.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/rottraj.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/transformtraj.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/trapveltraj.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.append.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/altimetersensor-system-object.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.clone.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.correct.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.correct.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.correct.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.correct.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackingckf.correctjpda.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.correctundetected.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.extractstate.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.fuseaccel.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.fusealtimeter.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.fusegps.html

• fusegps of ErrorStateIMUGPSFuser
• fusegyro of AsyncMARGGPSFuser
• fusemag of ahrs10filter
• fusemag of AsyncMARGGPSFuser
• fusemvo of ErrorStateIMUGPSFuser
• jpdaEvents
• extractState of ggiwphd
• ggiwphd
• initcaggiwphd
• initctggiwphd
• initcvggiwphd
• labeledDensity of ggiwphd
• likelihood of ggiwphd
• merge of ggiwphd
• partitionDetections
• pose of ahrs10filter
• pose of AsyncMARGGPSFuser
• pose of ErrorStateIMUGPSFuser
• predict of ahrs10filter
• predict of AsyncMARGGPSFuser
• predict of ErrorStateIMUGPSFuser
• predict of ggiwphd
• prune of ggiwphd
• randrot
• reset of ahrs10filter
• reset of AsyncMARGGPSFuser
• resetof ErrorStateIMUGPSFuser
• scale of ggiwphd
• stateinfo of ahrs10filter
• stateinfo of AsyncMARGGPSFuser
• stateinfo of ErrorStateIMUGPSFuser
• trackerJPDA
• trackerPHD
• trackingSensorConfiguration

Code Generation for SerDes Toolbox Functions
• serdes.AGC
• serdes.CDR
• serdes.CTLE

 Supported Functions

9-9

https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.fusegps.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.fusegyro.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.fusemag.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.fusemag.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.fusemvo.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackerjpda.jpdaevents.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.extractstate.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.initcaggiwphd.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.initctggiwphd.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.initcvggiwphd.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.labeleddensity.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.likelihood.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.merge.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackerphd.partitiondetections.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.pose.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.pose.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.pose.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.predict.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.predict.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.predict.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.predict.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.prune.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/randrot.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.reset.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.reset.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.reset.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ggiwphd.scale.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/ahrs10filter.stateinfo.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/asyncmarggpsfuser.stateinfo.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/errorstateimugpsfuser.stateinfo.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackerjpda-system-object.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackerphd-system-object.html
https://www.mathworks.com/help/releases/R2019a/fusion/ref/trackingsensorconfiguraiton.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/agc-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/cdr-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/ctle-system-object.html

• serdes.DFECDR
• serdes.FFE
• serdes.PassThrough
• serdes.SaturatingAmplifier
• serdes.VGA

Code generation for more Signal Processing Toolbox functions
The following Signal Processing Toolbox functions now support C/C++ code generation:

• Filter Design and Filtering:

buttap, filtfilt, filtord, fir1, firls, kaiserord, and sos2tf
• Spectral Analysis:

cpsd, czt, goertzel, mscohere, periodogram, and pwelch
• Time-Frequency Analysis

iscola, istft, and stft
• Spectral Windows:

barthannwin, bartlett, blackman, blackmanharris, bohmanwin, flattopwin, gausswin,
nuttallwin, parzenwin, rectwin, taylorwin, triang, and tukeywin now accept variable
input.

• Waveform Generation:

gauspuls, pulstran, rectpuls, square, and tripuls
• Linear Predictive Coding:

lsf2poly, poly2ac, poly2lsf, poly2rc, rc2ac, rc2poly, and rlevinson

Code generation for more Statistics and Machine Learning Toolbox
functions
• You can generate C/C++ code that predicts responses by using trained naive Bayes models.

• predict — Classify observations, estimate posterior probabilities, or compute
misclassification costs by applying a naive Bayes classification model to new data.

• You can specify a custom binary loss function for the predict function of the
CompactClassificationECOC.

• The following functions support code generation:

• ksdensity — Find kernel smoothing function estimates for univariate and bivariate data.
• mvksdensity — Find kernel smoothing function estimates for multivariate data.
• ecdf — Estimate empirical cumulative distribution function values.

R2019a

9-10

https://www.mathworks.com/help/releases/R2019a/serdes/ref/dfecdr-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/ffe-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/passthrough-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/saturatingamplifier-system-object.html
https://www.mathworks.com/help/releases/R2019a/serdes/ref/vga-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/buttap.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/filtfilt.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/filtord.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/fir1.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/firls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/kaiserord.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/sos2tf.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/cpsd.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/czt.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/goertzel.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/mscohere.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/iscola.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/istft.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/barthannwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/bartlett.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/blackman.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/blackmanharris.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/bohmanwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/flattopwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/gausswin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/nuttallwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/parzenwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rectwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/taylorwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/triang.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/tukeywin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/gauspuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/pulstran.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rectpuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/square.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/tripuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/lsf2poly.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2ac.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2lsf.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2rc.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2ac.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2poly.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rlevinson.html
https://www.mathworks.com/help/releases/R2019a/stats/compactclassificationnaivebayes.predict.html
https://www.mathworks.com/help/releases/R2019a/stats/classificationecoc.predict.html
https://www.mathworks.com/help/releases/R2019a/stats/classreg.learning.classif.compactclassificationecoc.html
https://www.mathworks.com/help/releases/R2019a/stats/ksdensity.html
https://www.mathworks.com/help/releases/R2019a/stats/mvksdensity.html
https://www.mathworks.com/help/releases/R2019a/stats/ecdf.html

Code generation for more Wavelet Toolbox functions
• cwtfilterbank
• cwtfreqbounds

Code generation for more WLAN Toolbox functions
MAC Frame Parser

• wlanAMPDUDeaggregate
• wlanMPDUDecode
• displayIEs of wlanMACManagementConfig

IEEE 802.11ax Signal Recovery

• wlanHERecoveryConfig
• getSIGBLength of wlanHERecoveryConfig
• interpretHESIGABits of wlanHERecoveryConfig
• wlanHESIGABitRecover
• wlanLSIGBitRecover

OFDM Demodulation and Information

• wlanHEDemodulate
• wlanDMGOFDMDemodulate
• wlanS1GDemodulate
• wlanHEOFDMInfo
• wlanVHTOFDMInfo
• wlanDMGOFDMInfo
• wlanHTOFDMInfo
• wlanNonHTOFDMInfo
• wlanS1GOFDMInfo

Reference Symbols

• wlanReferenceSymbols
• wlanClosestReferenceSymbol

802.11ay Channel Model

• wlanTGayChannel
• info of wlanTGayChannel
• showEnvironment of wlanTGayChannel
• wlanURAConfig

 Supported Functions

9-11

https://www.mathworks.com/help/releases/R2019a/wavelet/ref/cwtfilterbank.html
https://www.mathworks.com/help/releases/R2019a/wavelet/ref/cwtfreqbounds.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanampdudeaggregate.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanmpdudecode.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanmacmanagementconfig.displayies.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanherecoveryconfig.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanherecoveryconfig.getsigblength.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanherecoveryconfig.interprethesigabits.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanhesigabitrecover.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanlsigbitrecover.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanhedemodulate.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlandmgofdmdemodulate.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlans1gdemodulate.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanheofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanvhtofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlandmgofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanhtofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlannonhtofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlans1gofdminfo.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanreferencesymbols.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanclosestreferencesymbol.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlantgaychannel-system-object.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlantgaychannel.info.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlantgaychannel.showenvironment.html
https://www.mathworks.com/help/releases/R2019a/wlan/ref/wlanuraconfig.html

Code Generation Workflow

Access information about code generation programmatically by using
the report information object
In R2019a, you can export information about code generation to a variable in your base MATLAB
workspace. This variable contains an object whose properties contain information about:

• Code generation settings
• Input files
• Generated files
• Code generation error, warning, and information messages

To export code generation report information to the variable info in your base MATLAB workspace,
do one of the following:

• In the MATLAB Coder app, on the Debugging tab, set Export report information to variable to
the variable name info.

• At the command line, use the codegen command with the -reportinfo option. Specify the
variable name after the -reportinfo option.

codegen myFunction -reportinfo info

• At the command line, set the code configuration object property ReportInfoVarName to the
character vector 'info'.

• Generate and open the code generation report. Click Export Report Information. In the dialog
box, specify the variable name info.

You can use the report information object to programmatically access information about code
generation. For example, you can display the code generation messages at the MATLAB command
line. To perform this action, in your build script, access the property that contains these messages.

For more information, see Access Code Generation Report Information Programmatically and
coder.ReportInfo Properties.

Open code generation reports in any MATLAB installation without
MATLAB Coder
In R2019a, you do not need MATLAB Coder to open a code generation report. You can open the
report in any MATLAB installation. As a result, you can also share a code generation report with other
MATLAB users who do not have MATLAB Coder.

For more information on the report, see Code Generation Reports.

Generate parallel for-loops on macOS platform
In R2019a, you can generate parallel for-loops on the macOS platform by using parfor in your
MATLAB code. In previous releases, the code generated for parfor-loops on the macOS platform
was not parallelized.

R2019a

9-12

https://www.mathworks.com/help/releases/R2019a/coder/ug/report-information-object.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/coder.reportinfo-properties.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/code-generation-reports.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/parfor.html

To run the code generated for a parfor-loop outside of MATLAB, you must install an OpenMP library.
See Install OpenMP Library on macOS Platform.

Compatibility Considerations
If you generate code for legacy MATLAB Coder projects that use parfor-loops on the macOS
platform and run the generated code outside of MATLAB, you must install an OpenMP library.

Alternatively, you can restore the legacy behavior of not parallelizing parfor-loops on the macOS
platform. Do one of the following:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set the EnableOpenMP property to false.

• In the MATLAB Coder app, on the Advanced tab, set Enable OpenMP library if possible to No.

Register new hardware devices
Extend the range of supported hardware by using the target.Processor and
target.LanguageImplementation classes to register new devices.

For details, see Register New Hardware Devices.

Functionality being removed or changed
Template makefile (TMF) support will be removed
Warns

Support for template makefiles (TMF) will be removed in a future release.

By default, MATLAB Coder uses a toolchain approach to build libraries and executable programs.
Alternatively, you can specify use of a template makefile. In a future release, MATLAB Coder will stop
supporting template makefiles. If a configuration object or a project specifies a template makefile,
modify the object or project to specify the toolchain approach. Use
coder.make.upgradeCoderConfigObject or coder.make.upgradeMATLABCoderProject. See
Project or Configuration Is Using the Template Makefile.

To customize the build process, see Build Process Customization. To create a custom toolchain, see
Custom Toolchain Registration.

 Code Generation Workflow

9-13

https://www.mathworks.com/help/releases/R2019a/coder/ug/install-openmp-library-on-macos-platform.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/target.languageimplementation-class.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/register-new-hardware-devices.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/troubleshooting-fix-the-top-5-validation-issues.html#btwsf7b-1
https://www.mathworks.com/help/releases/R2019a/coder/ug/customizing-the-post-code-generation-build-process.html
https://www.mathworks.com/help/releases/R2019a/coder/custom-toolchain-registration.html

Performance

Faster C/C++ MEX function generation
MATLAB Coder creates a MEX function by generating and compiling C/C++ code or by using Just-In-
Time (JIT) compilation technology. In R2019a, MEX creation with C/C++ compilation is faster than in
previous releases. For more information about MEX generation with JIT compilation, see Speed Up
MEX Generation by Using JIT Compilation.

Generated code quality improvements
R2019a includes these generated code quality improvements:

• Loop fusion for more cases, including variable-size upper bounds.
• Loop fusion only when the code generator determines that the benefits of loop fusion outweigh the

cost.
• Elimination of some unnecessary assignments to global variables.

Loop fusion is an optimization that combines successive loops that have the same number of runs into
a single loop. See MATLAB Coder Optimizations in Generated Code.

R2019a

9-14

https://www.mathworks.com/help/releases/R2019a/coder/ug/speed-up-mex-generation-by-using-jit-compilation.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/speed-up-mex-generation-by-using-jit-compilation.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/matlab-coder-optimizations-in-generated-cc-code.html

Deep Learning with MATLAB Coder

Deep Learning: Generate code for prediction on ARM processors by
using codegen
In R2018b, you could generate C++ code for prediction from a trained convolutional neural network
(CNN) by using cnncodegen. In R2019a, you can use codegen or the MATLAB Coder app. See Code
Generation for Deep Learning Networks with ARM Compute Library.

Deep Learning: Generate code for more networks and layers
In R2019a, MATLAB Coder supports additional deep learning layers. With the additional layers, you
can generate code for more networks.

Additional Layers Supported for MKL-DNN

Layer Network
Layer that applies 2-D cropping to the input
(crop2dLayer)

––

Max unpooling layer (maxUnpooling2dLayer) SegNet
Global average pooling layer for spatial data
(nnet.keras.layer.GlobalAveragePooling
2dLayer)

Some networks imported from Keras

Scaling layer Inception-v3

Additional Layers Supported for ARM Compute Library

Layer Network
Clipped Rectified Linear Unit (ReLU) layer
(clippedReluLayer)

––

Leaky Rectified Linear Unit (ReLU) layer
(leakyReluLayer)

––

Global average pooling layer for spatial data
(nnet.keras.layer.GlobalAveragePooling
2dLayer)

Some networks imported from Keras

Scaling layer Inception-v3

See Deep Learning Networks and Layers Supported for C++ Code Generation.

 Deep Learning with MATLAB Coder

9-15

https://www.mathworks.com/help/releases/R2019a/coder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2019a/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.crop2dlayer.html
https://www.mathworks.com/help/releases/R2019a/deeplearning/ref/nnet.cnn.layer.maxunpooling2dlayer.html
https://www.mathworks.com/help/releases/R2019a/deeplearning/ref/nnet.cnn.layer.clippedrelulayer.html
https://www.mathworks.com/help/releases/R2019a/deeplearning/ref/nnet.cnn.layer.leakyrelulayer.html
https://www.mathworks.com/help/releases/R2019a/coder/ug/networks-and-layers-supported-for-c-code-generation.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2019a

9-16

https://www.mathworks.com/support/bugreports/

R2018b

Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

10

MATLAB Programming for Code Generation

Sparse Matrices: Generate code for the backslash operation
MATLAB Coder now supports code generation for the backslash operation on sparse matrices. The
backslash operation (also called mldivide and matrix left division) solves linear systems of
equations. To implement backslash, MATLAB Coder uses the SuiteSparse library and code from the
CXSparse package. See https://faculty.cse.tamu.edu/davis/suitesparse.html.

Statistics and Machine Learning Toolbox Code Generation: Update
deployed SVM model without regenerating code
If you have Statistics and Machine Learning Toolbox, you can generate C/C++ code for the prediction
of a support vector machine (SVM) model using a coder configurer, then update model parameters of
a deployed SVM model without having to regenerate the code. After training an SVM model, use the
learnerCoderConfigurer function to create a coder configurer object,
ClassificationSVMCoderConfigurer for an SVM classification model or
RegressionSVMCoderConfigurer for an SVM regression model. A coder configurer offers
convenient features to configure code generation options, generate C/C++ code, and update model
parameters in the generated code.

• Configure code generation options and specify the coder attributes of SVM model parameters
using object properties.

• Generate C/C++ code for the predict and update functions of the SVM model by using
generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the SVM model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

Class Support: Use objects in more functions and data types
These functions and data types now support value classes for code generation:

• coder.load
• load
• Global variables

R2018b

10-2

https://www.mathworks.com/help/releases/R2018b/matlab/ref/mldivide.html
https://faculty.cse.tamu.edu/davis/suitesparse.html
https://www.mathworks.com/help/releases/R2018b/stats/learnercoderconfigurer.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.coder.config.svm.classificationsvmcoderconfigurer.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.coder.config.svm.regressionsvmcoderconfigurer.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.classif.compactclassificationsvm.update.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.coder.config.svm.classificationsvmcoderconfigurer.generatecode.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.coder.config.svm.classificationsvmcoderconfigurer.validatedupdateinputs.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.load.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/load.html

Supported Functions

Sensor Fusion and Tracking Toolbox Code Generation: Generate code
to accelerate and deploy your algorithm
For the list of Sensor Fusion and Tracking Toolbox™ functions supported for code generation in
R2018b, see Sensor Fusion and Tracking Toolbox in Functions and Objects Supported for C/C++
Code Generation — Category List.

5G Toolbox Code Generation: Generate code for downlink physical
layer
For the list of 5G Toolbox™ functions supported for code generation in R2018b, see 5G Toolbox in
Functions and Objects Supported for C/C++ Code Generation — Category List.

Fuzzy Logic Toolbox Code Generation: Generate code to load and
evaluate Fuzzy Inference Systems
In R2018b, Fuzzy Logic Toolbox™ supports C/C++ code generation for built-in membership functions
and these functions:

• evalfis
• evalfisOptions
• getFISCodeGenerationData

For the list of Fuzzy Logic Toolbox functions supported for code generation in R2018b, see Fuzzy
Logic Toolbox in Functions and Objects Supported for C/C++ Code Generation — Category List.

Code generation for more MATLAB Functions
• lscov
• func2str
• num2str

Code generation for rng 'shuffle' option
Code generation now supports the rng 'shuffle' option.

The generated code for rng('shuffle') might produce different seeds than MATLAB produces.

Code generation for more Audio Toolbox functions
• interpolateHRTF
• pitch

 Supported Functions

10-3

https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html#mw_ed4c7dd9-a411-48b2-a16e-fef331e155ac
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html#mw_84dbd754-7183-45ce-ab99-6354a4dde8b8
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html
https://www.mathworks.com/help/releases/R2018b/fuzzy/evalfis.html
https://www.mathworks.com/help/releases/R2018b/fuzzy/evalfisoptions.html
https://www.mathworks.com/help/releases/R2018b/fuzzy/getfiscodegenerationdata.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html#mw_3c619dbc-d3c9-4c0b-9085-135865102fed
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html#mw_3c619dbc-d3c9-4c0b-9085-135865102fed
https://www.mathworks.com/help/releases/R2018b/coder/ug/functions-supported-for-code-generation-categorical-list.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/lscov.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/func2str.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/num2str.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/rng.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/interpolatehrtf.html
https://www.mathworks.com/help/releases/R2018b/audio/ref/pitch.html

Code generation for more Automated Driving System Toolbox
functions
• lateralControllerStanley

Code generation for more Communications Toolbox functions
• awgn
• bsc
• wgn

Code generation for more Phased Array System Toolbox functions and
System objects
• phased.PulseCompressionLibrary
• phased.RangeAngleResponse
• phased.MonopulseFeed
• getMonopulseEstimator
• phased.MonopulseEstimator
• AlphaBetaFilter and object functions clone, correct, distance, likelihood, and

predict

Code generation for more Robotics System Toolbox functions
• quaternion and quaternion object functions
• fixedwing
• multirotor
• uavWaypointFollower
• control
• derivative
• environment
• state

Code generation for more Statistics and Machine Learning Toolbox
functions
• coxphfit
• update of CompactRegressionSVM
• update of CompactClassificationSVM

Code generation for more WLAN Toolbox functions
• wlanHEDataBitRecover

R2018b

10-4

https://www.mathworks.com/help/releases/R2018b/driving/ref/lateralcontrollerstanleyfunction.html
https://www.mathworks.com/help/releases/R2018b/comm/ref/awgn.html
https://www.mathworks.com/help/releases/R2018b/comm/ref/bsc.html
https://www.mathworks.com/help/releases/R2018b/comm/ref/wgn.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/phased.pulsecompressionlibrary-system-object.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/phased.rangeangleresponse-system-object.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/phased.monopulsefeed-system-object.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/getmonopulseestimator.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/phased.monopulseestimator-system-object.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.clone.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.correct.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.distance.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.likelihood.html
https://www.mathworks.com/help/releases/R2018b/phased/ref/alphabetafilter.predict.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/quaternion.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/fixedwing.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/multirotor.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/uavwaypointfollower-system-object.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.control.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.derivative.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.environment.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.state.html
https://www.mathworks.com/help/releases/R2018b/stats/coxphfit.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.classif.compactclassificationsvm.update.html
https://www.mathworks.com/help/releases/R2018b/stats/classreg.learning.classif.compactclassificationsvm.update.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanhedatabitrecover.html

• wlanHEMUConfig
• wlanHESUConfig
• wlanMACFrame
• wlanMACFrameConfig
• wlanMACManagementConfig
• wlanMSDULengths

 Supported Functions

10-5

https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanhemuconfig.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanhesuconfig.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanmacframe.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanmacframeconfig.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanmacmanagementconfig.html
https://www.mathworks.com/help/releases/R2018b/wlan/ref/wlanmsdulengths.html

Generated Code Improvements

Standard Math Library: Default to C99 standard math library for C
In R2018b, the default standard math library for C code generation is C99 (ISO) or ISO/IEC
9899:1999. In previous releases, the default standard math library was C89/C90 (ANSI). The C99
library provides more functionality, such as the bool data type and built-in constants for Inf and
NaN. Type casting can also be reduced.

Compatibility Considerations
• The compiler that you use to generate code must be compatible with C99.
• When using C99, the bit pattern for NaN in the generated code can be different from the bit

pattern for NaN in MATLAB. Both NaN representations comply with the IEEE 754-1985 standard.
To revert to C89/C90, see Change the Standard Math Library.

R2018b

10-6

https://www.mathworks.com/help/releases/R2018b/coder/ug/standard-math-libraries.html

Code Generation Workflow

MATLAB Support Package for Raspberry Pi Hardware: Deploy MATLAB
function to Raspberry Pi
With MATLAB Support Package for Raspberry Pi® Hardware, you can interactively control a
Raspberry Pi from your MATLAB host computer. Now, if you also have MATLAB Coder, the support
package provides commands to automate deployment of your MATLAB function as a standalone
executable on the Raspberry Pi. Use targetHardware to create a Raspberry Pi configuration object.
Then, use deploy to deploy the function to the Raspberry Pi hardware.

Many functions in the support package are supported for code generation. For information about
code generation support, see the function reference pages in the documentation for the support
package MATLAB Support Package for Raspberry Pi Hardware.

Multiple Entry-Point Functions: Simplify input specification by passing
an output as an input
In R2018b, the coder.OutputType function enables you to reuse the output type from one entry-
point function as the input type to another entry-point function. You can:

• Simplify input specification when multiple entry-point functions use the same data type.
• Ensure synchronized type definitions across entry-point function interfaces.
• More easily partition and extend your code into multiple entry-point functions to provide greater

functionality or versatility.

For more information, see Pass an Entry-Point Function Output as an Input.

Changes to Check for Run-Time Issues step in the MATLAB Coder app
R2018b, the Check for Run-Time Issues step of the MATLAB Coder app includes these changes:

• The app no longer accumulates persistent data across runs of Check for Issues and no longer
generates a link for you to clear the MEX function.

• As in previous releases, line execution counts accumulate across runs of Check for Issues. To
reset the counts, use the new Reset line execution counts link.

See Collect and View Line Execution Counts for Your MATLAB Code.

 Code Generation Workflow

10-7

https://www.mathworks.com/help/releases/R2018b/supportpkg/raspberrypiio/index.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.outputtype.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/pass-an-entry-point-function-output-as-an-input.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/collect-and-view-line-execution-counts-for-your-matlab-code.html

Performance

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific BLAS library
To improve the execution speed of code generated from algorithms that perform certain low-level
vector and matrix computations (such as matrix multiplication), MATLAB Coder can generate calls to
BLAS functions by using the CBLAS C interface to BLAS. If the input arrays for the matrix operations
meet certain criteria, the code generator produces calls to relevant BLAS functions. In previous
releases, only generated MEX called BLAS functions. In R2018b, generated standalone code can call
BLAS functions.

BLAS is a software library for numeric computation of basic vector and matrix operations that has
several highly optimized machine-specific implementations. MATLAB uses this library for basic matrix
computations. For MEX functions, the code generator uses the BLAS library that is included with
MATLAB. For standalone code, the code generator uses the CBLAS interface for the BLAS library that
you specify. If you do not specify a BLAS library, the code generator produces code for the matrix
operation instead of generating a BLAS call.

See Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls.

Compiler Support: Revert to JIT compilation for MEX code generation
when supported compiler not detected
For MEX code generation, the code generator defaults to JIT compilation when a supported compiler
is not detected. JIT compilation does not support custom code called through coder.ceval or the
use of external libraries. For full functionality, install a supported compiler. See Supported and
Compatible Compilers on the MathWorks website.

Nonfinite Support as Needed: Generate files for nonfinite data support
only when the generated code uses nonfinite data
To support nonfinite data (NaN and Inf), the code generator produces the files rt_nonfinite.c,
rtGetInf.c, and rtGetNaN.c, and associated header files. In previous releases, if you enabled
support for nonfinite data, the code generator always produced these files. In R2018b, if you enable
support for nonfinite data, the code generator produces the files only if the generated code uses
nonfinite data.

Compatibility Considerations
If necessary for your legacy code, you can generate the nonfinite data support files even if the
generated code does not use nonfinite data.

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set SupportNonFinite to true and
GenerateNonFiniteFilesIfUsed to false.

• In the MATLAB Coder app, on the All Settings tab, set Support nonfinite numbers to Yes and
Generate nonfinite support files if used to No.

R2018b

10-8

https://www.netlib.org/blas/
https://www.netlib.org/blas/#_cblas
https://www.mathworks.com/help/releases/R2018b/coder/ug/speed-up-matrix-operations-in-generated-standalone-code-by-using-blas-calls.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.embeddedcodeconfig.html

Loop Unrolling Threshold: Optimize code generated for loops
In R2018b, the code generator uses a configurable threshold to determine whether to automatically
unroll a for-loop.

When the code generator unrolls a for-loop, instead of producing a for-loop in the generated code,
it produces a copy of the loop body for each iteration. For small, tight loops, unrolling can improve
performance. However, for large loops, unrolling can significantly increase code generation time and
generate inefficient code.

If the number of loop iterations is less than the threshold, the code generator automatically unrolls
the loop. If the number of iterations is greater than or equal to the threshold, the code generator
produces a for-loop. The default value of the threshold is 5. By modifying the threshold, you can fine-
tune loop unrolling. To modify the threshold:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set the LoopUnrollThreshold property.

• In the MATLAB Coder app, on the Speed tab, set Loop unrolling threshold .

For more details, see Unroll for-Loops.

The memcpy optimization can replace either a for-loop or individual copies of the loop body with a
memcpy call. See memcpy Optimization.

 Performance

10-9

https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/unroll-for-loops.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/memcpy-optimization.html

Deep Learning with MATLAB Coder

Deep Learning Network Code Generation: Generate C++ code for
inference from a trained convolutional neural network
In R2018b, you can use MATLAB Coder with Deep Learning Toolbox to generate C++ code for deep
learning networks. You can generate code for inference from a convolutional neural network (CNN)
that you train by using Deep Learning Toolbox or from a pretrained network that you import.

You can generate code for Intel CPUs or ARM processors. For Intel CPUs, the code generator takes
advantage of the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN). For ARM
processors, the code generator takes advantage of the ARM Compute libraries. You must install the
library for your processor. You must also install the support package MATLAB Coder Interface for
Deep Learning.

For more information, see Deep Learning with MATLAB Coder.

R2018b

10-10

https://www.mathworks.com/help/releases/R2018b/coder/deep-learning-with-matlab-coder.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

10-11

https://www.mathworks.com/support/bugreports/

R2018a

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

11

MATLAB Programming for Code Generation
Sparse Matrices: Enable more efficient computation by using sparse
matrices in generated code
In R2018a, you can generate code that uses sparse matrices and sparse matrix operations. Sparse
matrices provide efficient storage for arrays with many zero elements. In generated code, sparse
matrices can improve performance and reduce memory usage compared with full matrices.
Computation time on sparse matrices scales only with the number of operations on nonzero elements.

In R2018a, code generation support focuses on sparse matrix construction, arithmetic, concatenation,
indexing, and some element-wise functions. See Code Generation for Sparse Matrices.

Delete Method: Call clean-up code automatically when handle classes
are deleted in generated code
In 2018a, you can generate code for MATLAB code that uses delete methods (destructors) for
handle classes. To perform clean-up operations, such as closing a previously opened file before an
object is destroyed, use a delete method. For the guidelines and restrictions on code generation for
delete methods, see Code Generation for Handle Class Destructors.

Compatibility Considerations
In 2017b, you could explicitly call the delete method of the handle superclass, but not of any
derived class. In 2018a, you cannot explicitly call delete methods for code generation. The
generated code automatically calls them. If you attempt to explicitly call a delete method, you get
an error.

Cell Array Support: Import cell arrays into generated code by using
coder.load and load
In previous releases, you could not import cell arrays from saved data into generated code. In
R2018a, cell arrays are supported for loading. For example, save a cell array in the file data.mat:

x = {1,'a',3};
save('data.mat', 'x');

Write a function foo that imports the cell array data.

function [out1, out2] = foo
 compileTimeData = coder.load('data.mat');
 out1 = compileTimeData.x;
 runTimeData = load('data.mat');
 out2 = runTimeData.x;
end

In R2018a, you can generate a MEX function foo_mex for this code:

codegen foo

Choose coder.load or load depending on whether you want to update saved data at run time. The
function load is valid only for MEX code and Simulink simulation. If you change the values of

R2018a

11-2

https://www.mathworks.com/help/releases/R2018a/coder/ug/code-generation-for-sparse-matrices.html
https://www.mathworks.com/help/releases/R2018a/coder/ug/code-generation-for-handle-class-destructors.html
https://www.mathworks.com/help/releases/R2018a/coder/ref/coder.load.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/load.html

data.mat and rerun the MEX function foo_mex, the second output variable out2 is updated to the
new values at run time.

 MATLAB Programming for Code Generation

11-3

Supported Functions

Statistics and Machine Learning Toolbox Code Generation: Generate
code for distance calculation on vectors and matrices, and for
prediction by using k-nearest neighbor with Kd-tree search and
nontree ensemble models
The following functions support code generation:

• grp2idx — Create an index vector from a grouping variable.
• pdist — Find the pairwise distance between pairs of observations.
• squareform — Format a distance matrix.

When you train a k-nearest neighbor classification model by using fitcknn for code generation, you
can now use the Kd-tree search algorithm. For more details, see the C/C++ Code Generation section
of the ClassificationKNN class.

When you find nearest neighbors by using the functions knnsearch and rangesearch and the
object functions knnsearch and rangesearch for code generation, you can now use the Kd-tree
search algorithm.

When you train an ensemble by using fitcensemble for code generation, you can now specify
'discriminant' or 'knn' as weak learners by using the 'Learners' name-value pair argument.
For more details, see the C/C++ Code Generation section of the
CompactClassificationEnsemble class.

Code generation for MATLAB sprintf function
In R2018a, you can generate code from your MATLAB code that uses sprintf to construct formatted
strings and character arrays.

Code generation for MATLAB sort function options
In R2018a, code generation supports additional options for MATLAB sort functions:

• Code generation of issorted, issortedrows, sort, and sortrows supports the
ComparisonMethod and MissingPlacement options.

• Code generation of issorted and issortedrows supports the 'monotonic',
'strictascend', 'strictdescend', and 'strictmonotonic' values for sorting direction.

• Code generation of issortedrows supports specification of the sorting direction as a cell array of
character vectors.

Code generation support for issortedrows is new for R2018a.

Code generation for more MATLAB functions
• maxk
• mink

R2018a

11-4

https://www.mathworks.com/help/releases/R2018a/stats/grp2idx.html
https://www.mathworks.com/help/releases/R2018a/stats/pdist.html
https://www.mathworks.com/help/releases/R2018a/stats/squareform.html
https://www.mathworks.com/help/releases/R2018a/stats/fitcknn.html
https://www.mathworks.com/help/releases/R2018a/stats/knnsearch.html
https://www.mathworks.com/help/releases/R2018a/stats/rangesearch.html
https://www.mathworks.com/help/releases/R2018a/stats/exhaustivesearcher.knnsearch.html
https://www.mathworks.com/help/releases/R2018a/stats/exhaustivesearcher.rangesearch.html
https://www.mathworks.com/help/releases/R2018a/stats/fitcensemble.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/sprintf.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/sortrows.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/issortedrows.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/maxk.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/mink.html

• nzmax
• rescale
• spalloc
• sparse
• spdiags
• speye
• spfun
• spones
• vecnorm

Code generation for more Audio Toolbox functions
• cepstralFeatureExtractor
• splMeter
• voiceActivityDetector

Code generation for more Communications System Toolbox functions
• apskdemod
• apskmod
• dvbsapskdemod
• dvbsapskmod
• mil188qamdemod
• mil188qammod
• tpcdec
• tpcenc

Code generation for more Computer Vision System Toolbox functions
and objects
• detectKAZEFeatures
• KAZEPoints

Code generation for more DSP System Toolbox functions
• dsp.ComplexBandpassDecimator
• getRateChangeFactors object function of the dsp.FarrowRateConverter and

dsp.SampleRateConverter System objects.

Code generation for more Phased Array System Toolbox System
objects
• phased.PulseWaveformLibrary

 Supported Functions

11-5

https://www.mathworks.com/help/releases/R2018a/matlab/ref/nzmax.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/rescale.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/spalloc.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/sparse.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/spdiags.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/speye.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/spfun.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/spones.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/vecnorm.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/cepstralfeatureextractor-system-object.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/splmeter-system-object.html
https://www.mathworks.com/help/releases/R2018a/audio/ref/voiceactivitydetector-system-object.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/apskdemod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/apskmod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/dvbsapskdemod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/dvbsapskmod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/mil188qamdemod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/mil188qammod.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/tpcdec.html
https://www.mathworks.com/help/releases/R2018a/comm/ref/tpcenc.html
https://www.mathworks.com/help/releases/R2018a/vision/ref/detectkazefeatures.html
https://www.mathworks.com/help/releases/R2018a/vision/ref/kazepoints.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.complexbandpassdecimator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.farrowrateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.samplerateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/phased/ref/phased.pulsewaveformlibrary-system-object.html

Code generation for more Robotics System Toolbox functions
• matchScansGrid

Code generation for more Signal Processing Toolbox functions
• emd

Code generation for more Wavelet Toolbox functions
• emd

Code generation for more WLAN System Toolbox System objects
• wlanTGaxChannel

R2018a

11-6

https://www.mathworks.com/help/releases/R2018a/robotics/ref/matchscansgrid.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/emd.html
https://www.mathworks.com/help/releases/R2018a/wavelet/ref/emd.html
https://www.mathworks.com/help/releases/R2018a/wlan/ref/wlantgaxchannel-system-object.html

Generated Code Improvements

N-Dimensional Indexing: Enhance readability by preserving array
dimensions in generated code
By default, the code generator creates one-dimensional arrays in C/C++ code for N-dimensional
arrays in MATLAB code. C/C++ code that uses N-dimensional indexing can be easier to read and in
certain cases, better suited for external code integration. In R2018a, you can enable full N-
dimensional indexing. See Generate Code That Uses N-Dimensional Indexing.

 Generated Code Improvements

11-7

https://www.mathworks.com/help/releases/R2018a/coder/ug/generate-code-that-uses-n-dimensional-indexing.html

Code Generation Workflow

New Code Generation Report: View more information and navigate
through code generation results more easily
In R2018a, the MATLAB Coder code generation report has a new user interface, more information,
additional functionality, and improved navigation. If you have Embedded Coder, the new report also
provides interactive, bidirectional tracing between MATLAB and generated C/C++ code.

You can now:

• Find more information on the Summary tab, including code generation settings and your entry-
point functions with the input argument data types that you specified.

• Look in one place, the Code Insights tab, for potential issues in the generated code.
• Package generated C/C++ files for relocation to another development environment.
• Navigate from the MATLAB code to context-sensitive information. For example, if you double-click

a variable in the MATLAB code, you see the variable in the Variables tab.

In R2018a, the report is located in the same folder as in previous releases, but has a different file
format. In previous releases, the report was saved with an HTML format and consisted of many files.
In R2018a, the file is saved as one file with an .mldatx file extension. You can open a file with
an .mldatx file extension in MATLAB.

R2018a

11-8

See Code Generation Reports.

Compatibility Considerations
If you generate a report in R2018a, you cannot open it in a previous release. In R2018a, you can open
reports that you generated in a previous release, but they look and behave as they did in that
previous release.

MEX Profiling: See execution times of generated MEX functions in
MATLAB Profiler
In R2018a, you can profile execution times for MEX functions that you generate by using MATLAB
Coder. Profiling the generated MEX can help you to identify performance issues early in the
development cycle.

To use the MATLAB Profiler with a generated MEX function:

1 Enable MEX profiling.

cfg = coder.config('mex');
cfg.EnableMexProfiling = true;

Alternatively, you can use codegen with the -profile option.

The equivalent setting in the MATLAB Coder app is Enable execution profiling.
2 Generate the MEX file.
3 Run the MATLAB Profiler and view the Profile Summary Report.

profile on;
myFunction_mex;
profile viewer;

If you have a test file that calls your MATLAB function, you can:

• Generate the MEX function and profile it in one step by using codegen with the -profile and -
test options. If you turned on the MATLAB Profiler before, turn it off before you use these two
options together.

codegen MyFunction -test MyFunctionTest -profile

• Profile the MEX function in the Verify step of the app. If you turned on the MATLAB Profiler
before, turn it off before you perform this action.

For more information, see Profile MEX Functions by Using MATLAB Profiler.

Run-Time Error Detection Support for error: Use error with run-time
error detection and reporting in standalone code
In R2018a, run-time error detection in standalone code supports error. If the error condition occurs,
execution terminates with a message that an error occurred. To see the actual message specified by
error, generate and run a MEX function. See Run-Time Error Detection and Reporting in Standalone
C/C++ Code.

 Code Generation Workflow

11-9

https://www.mathworks.com/help/releases/R2018a/coder/ug/code-generation-reports.html
https://www.mathworks.com/help/releases/R2018a/coder/ug/profile-generated-mex-functions-using-matlab-profiler.html
https://www.mathworks.com/help/releases/R2018a/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html
https://www.mathworks.com/help/releases/R2018a/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html

Performance

Row-Major Array Layout: Simplify interfacing generated code with C
environments by storing arrays in row-major layout
The code that you generate can store array elements in column-major or row-major array layout. In
column-major array layout, the elements of the columns are contiguous in memory. In row-major, the
elements of the rows are contiguous. MATLAB uses column-major array layout by default, whereas
the C/C++ languages use row-major layout by default.

In previous releases, the code generator produced C/C++ code that used column-major array layout.
In R2018a, you can choose to generate code that uses row-major array layout. Row-major layout can
improve performance for certain algorithms and ease integration with other code that also uses row-
major layout. For more information, see Array Layout.

More optimizations in generated code
R2018a includes these additional code generation optimizations:

• The code generator can now use the loop invariant code motion optimization with code that
contains global or persistent variables. The loop invariant code motion optimization moves
invariant code outside of a loop so that it executes only once before the loop instead of with each
loop iteration.

• If a while loop in the generated code would execute exactly one time, the code generator can
eliminate it and replace it with the body of the loop.

R2018a

11-10

https://www.mathworks.com/help/releases/R2018a/coder/array-layout.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

11-11

https://www.mathworks.com/support/bugreports/

R2017b

Version: 3.4

New Features

Bug Fixes

12

MATLAB Programming for Code Generation

Strings: Generate code for MATLAB code that represents text as a
string scalar
In previous releases, in MATLAB code for code generation, you represented text as a character
vector. For example:

c = 'Hello World';

In R2017b, you can represent text as a string scalar (a 1-by-1 MATLAB string array). For example:

s = "Hello World";

Code generation does not support string arrays that have more than one element.

See Code Generation for Strings.

Cell Arrays and Classes in Structures: Generate code for structures
that contain cell arrays and classes
In previous releases, for code generation, you could not assign a cell array or object to a structure
field. In R2017b, structures can contain cell arrays and classes. For example, you can now generate
code for the function assignToStruct:

function result = assignToStruct(in1)
%#codegen
x = MyClass;
x.prop = in1;
y.val = x; % object in struct
y.val2 = {1,2,3}; % cell in struct
result = y.val.prop;
end

Class Folders: Generate code for MATLAB classes defined by using
multiple files
You can generate code for MATLAB code that uses a class that is defined in a class folder. When you
define a class in a class folder, you can put the class definition in one file and the methods in other,
separate files. The class folder name consists of the @ character followed by the class name. For
example, the class folder @MyClass contains the class definition file MyClass.m. The folder can also
contain separate files for the methods. For more information about class folders, see Folders
Containing Class Definitions (MATLAB).

Property Validation: Generate code for classes that restrict property
values
You can generate code for classes that restrict property values according to size, class, and other
criteria. To establish criteria that a property value must conform to, use MATLAB validation functions
or write your own validation functions. For information about property validation, see Validate
Property Values (MATLAB).

R2017b

12-2

https://www.mathworks.com/help/releases/R2017b/coder/ug/code-generation-for-strings.html
https://www.mathworks.com/help/releases/R2017b/matlab/matlab_oop/organizing-classes-in-folders.html
https://www.mathworks.com/help/releases/R2017b/matlab/matlab_oop/organizing-classes-in-folders.html
https://www.mathworks.com/help/releases/R2017b/matlab/matlab_oop/validate-property-values.html
https://www.mathworks.com/help/releases/R2017b/matlab/matlab_oop/validate-property-values.html

MEX functions report errors that result from property validation. Standalone C/C++ code reports
these errors only if you enable run-time error reporting. See Run-Time Error Detection and Reporting
in Standalone C/C++ Code. Before you generate standalone C/C++ code, it is a best practice to test
property validation by running a MEX function over the full range of input values.

Value Class Inputs: Pass objects of value classes to and from extrinsic
functions and as constant inputs to entry-point functions
In R2017b, you can now use value class inputs in these ways:

• Pass an object of a value class as an input to or output from an extrinsic function.
• Specify that an object of a value class is a constant entry-point function input argument.

If you use codegen, to specify that an object is constant, use coder.Constant. See Specify
Objects as Inputs at the Command Line. In the MATLAB Coder app, to specify that an object is
constant, see Specify Objects as Inputs in the MATLAB Coder App.

 MATLAB Programming for Code Generation

12-3

https://www.mathworks.com/help/releases/R2017b/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html
https://www.mathworks.com/help/releases/R2017b/coder/ref/coder.constant-class.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/define-value-class-inputs.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/define-value-class-inputs.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/specify-value-class-inputs-in-the-matlab-coder-app.html

Supported Functions

Statistics and Machine Learning Toolbox Code Generation: Generate C
code for prediction by using discriminant analysis, k-nearest neighbor,
SVM regression, regression tree ensemble, and Gaussian process
regression models
You can generate code for these Statistics and Machine Learning Toolbox functions:

• predict (CompactClassificationDiscriminant) — Classify observations or estimate
classification scores and costs by applying a discriminant analysis classification to new data.

• predict (ClassificationKNN) — Classify observations or estimate classification scores and
costs by applying k-nearest neighbor classification, based on an exhaustive search, to new data.

• predict (CompactRegressionSVM) — Predict responses by applying a support vector machine
(SVM) regression to new data.

• predict (CompactRegressionEnsemble) — Predict responses by applying ensembles of
regression trees to new data.

• predict (RegressionLinear) — Predict responses by applying a linear regression to new data.
• predict (CompactRegressionGP) — Predict responses or estimate confidence intervals on

predictions by applying a Gaussian process regression to new data.
• knnsearch (ExhaustiveSearcher) and knnsearch— Identify the k-nearest neighbors using

the exhaustive search algorithm.
• rangesearch (ExhaustiveSearcher) and rangesearch — Identify all neighbors within a
specified distance using the exhaustive search algorithm.

• pdist2 — Compute the pairwise distance between two sets of observations.

When you train an SVM model by using fitcsvm for code generation, you can now specify a score
transformation function by using the 'ScoreTransform' name-value pair argument or by assigning
the ScoreTransform object property. Therefore, saveCompactModel can accept compact SVM
models equipped to estimate class posterior probabilities, that is, models returned by fitposterior
or fitSVMPosterior. Also, you can now implement one-class learning.

When you train a linear classification model by using fitclinear for code generation, you can now
specify either 'svm' or 'logistic' for the 'Learner' name-value pair argument.

Code generation for more MATLAB functions
Characters and Strings

• contains
• convertCharsToStrings
• convertStringsToChars
• count
• endsWith
• erase

R2017b

12-4

https://www.mathworks.com/help/releases/R2017b/stats/compactclassificationdiscriminant.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/compactclassificationdiscriminant-class.html
https://www.mathworks.com/help/releases/R2017b/stats/classificationknn.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/classificationknn-class.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressionsvm.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressionsvm-class.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressionensemble.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressionensemble-class.html
https://www.mathworks.com/help/releases/R2017b/stats/regressionlinear.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/regressionlinear-class.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressiongp.predict.html
https://www.mathworks.com/help/releases/R2017b/stats/compactregressiongp-class.html
https://www.mathworks.com/help/releases/R2017b/stats/searcher.knnsearch.html
https://www.mathworks.com/help/releases/R2017b/stats/exhaustivesearcher.html
https://www.mathworks.com/help/releases/R2017b/stats/knnsearch.html
https://www.mathworks.com/help/releases/R2017b/stats/searcher.rangesearch.html
https://www.mathworks.com/help/releases/R2017b/stats/exhaustivesearcher.html
https://www.mathworks.com/help/releases/R2017b/stats/rangesearch.html
https://www.mathworks.com/help/releases/R2017b/stats/pdist2.html
https://www.mathworks.com/help/releases/R2017b/stats/fitcsvm.html
https://www.mathworks.com/help/releases/R2017b/stats/compactclassificationsvm-class.html#bt7czq2.shared-ScoreTransform
https://www.mathworks.com/help/releases/R2017b/stats/savecompactmodel.html
https://www.mathworks.com/help/releases/R2017b/stats/compactclassificationsvm.fitposterior.html
https://www.mathworks.com/help/releases/R2017b/stats/fitsvmposterior.html
https://www.mathworks.com/help/releases/R2017b/stats/fitclinear.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/contains.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/convertcharstostrings.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/convertstringstochars.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/count.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/endswith.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/erase.html

• eraseBetween
• extractAfter
• extractBefore
• insertAfter
• insertBefore
• isstring
• replace
• replaceBetween
• reverse
• startsWith
• string
• strip
• strlength

Data Type Conversion

• int2str

Data Types

• enumeration

Fourier Analysis and Filtering

• fftw

Moving Statistics

• movmad
• movmax
• movmean
• movmedian
• movmin
• movprod
• movstd
• movsum
• movvar

Preprocessing Data

• isoutlier
• filloutliers

Programming Utilities

• builtin

 Supported Functions

12-5

https://www.mathworks.com/help/releases/R2017b/matlab/ref/erasebetween.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/extractafter.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/extractbefore.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/insertafter.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/insertbefore.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/isstring.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/replace.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/replacebetween.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/reverse.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/startswith.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/string.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/strip.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/strlength.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/int2str.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/enumeration.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fftw.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movmad.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movmax.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movmean.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movmedian.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movmin.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movprod.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movstd.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movsum.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/movvar.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/isoutlier.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/filloutliers.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/builtin.html

Property Validation Functions

• mustBeFinite
• mustBeGreaterThan
• mustBeGreaterThanOrEqual
• mustBeInteger
• mustBeLessThan
• mustBeLessThanOrEqual
• mustBeMember
• mustBeNegative
• mustBeNonempty
• mustBeNonNan
• mustBeNonnegative
• mustBeNonpositive
• mustBeNonsparse
• mustBeNonzero
• mustBeNumeric
• mustBeNumericOrLogical
• mustBePositive
• mustBeReal

Code generation for more Audio Toolbox System objects
• graphicEQ

Code generation for more Control System Toolbox objects
• particleFilter

Code generation for more DSP System Toolbox System objects
• dsp.BlockLMSFilter
• dsp.FrequencyDomainFIRFilter
• dsp.ZoomFFT

Code generation for more Phased Array System Toolbox System
objects and functions
• phased.HeterogeneousConformalArray
• phased.HeterogeneousULA
• phased.HeterogeneousURA
• phased.UnderwaterRadiatedNoise

R2017b

12-6

https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbefinite.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbegreaterthan.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbegreaterthanorequal.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbeinteger.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbelessthan.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbelessthanorequal.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbemember.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenegative.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonempty.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonnan.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonnegative.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonpositive.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonsparse.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenonzero.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenumeric.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbenumericorlogical.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbepositive.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/mustbereal.html
https://www.mathworks.com/help/releases/R2017b/audio/ref/graphiceq-system-object.html
https://www.mathworks.com/help/releases/R2017b/control/ref/particlefilter.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.zoomfft-system-object.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/phased.heterogeneousconformalarray-system-object.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/phased.heterogeneousula-system-object.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/phased.heterogeneousura-system-object.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/phased.underwaterradiatednoise-system-object.html

• range2tl
• sonareqsl
• sonareqsnr
• sonareqtl
• tl2range

Code generation for more Robotics System Toolbox functions
• lidarScan
• matchScans

Code generation for more System Identification Toolbox objects
• particleFilter

Code Generation for more WLAN System Toolbox functions
• wlanBCCDecode
• wlanBCCEncode
• wlanBCCDeinterleave
• wlanBCCInterleave
• wlanConstellationDemap
• wlanConstellationMap
• wlanDMGDataBitRecover
• wlanDMGHeaderBitRecover
• wlanScramble
• wlanGolaySequence
• wlanSegmentDeparseBits
• wlanSegmentDeparseSymbols
• wlanSegmentParseBits
• wlanSegmentParseSymbols
• wlanStreamDeparse
• wlanStreamParse

 Supported Functions

12-7

https://www.mathworks.com/help/releases/R2017b/phased/ref/range2tl.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/sonareqsl.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/sonareqsnr.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/sonareqtl.html
https://www.mathworks.com/help/releases/R2017b/phased/ref/tl2range.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/lidarscan.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/matchscans.html
https://www.mathworks.com/help/releases/R2017b/ident/ref/particlefilter.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanbccdecode.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanbccencode.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanbccdeinterleave.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanbccinterleave.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanconstellationdemap.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanconstellationmap.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlandmgdatabitrecover.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlandmgheaderbitrecover.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanscramble.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlangolaysequence.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlansegmentdeparsebits.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlansegmentdeparsesymbols.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlansegmentparsebits.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlansegmentparsesymbols.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanstreamdeparse.html
https://www.mathworks.com/help/releases/R2017b/wlan/ref/wlanstreamparse.html

Code Generation Workflow

App Support for Variable Number of Output Arguments: Specify the
number of entry-point function output arguments to generate
In R2017a, when you generated code with codegen, you could use the -nargout option to specify
the number of entry-point function output arguments to generate. In R2017b, you can also specify the
number of entry-point function output arguments in the MATLAB Coder app. To specify the number of
outputs when a function returns varargout, or to generate fewer outputs than the function defines,
on the Define Input Types page, in Number of outputs, select the number.

See Specify Number of Entry-Point Function Input or Output Arguments to Generate.

Clear MEX in App: Reset the state of the Check for Run-Time Issues
step
In the MATLAB Coder app, after you check for run-time issues, you can clear the generated MEX
function from memory. Next to the Check for Issues button, click the hyperlink.

Clearing the MEX function resets data, such as persistent variables or line execution counts, that the
Check for Run-Time Issues step accumulates.

I/O Logging for Fixed-Point Conversion in App: Selectively log and plot
function inputs and outputs at any level of your design
You can now elect to log and plot all function inputs and outputs during the Test phase of fixed-point
conversion in the MATLAB Coder app. In previous releases, you could log only top-level function
inputs and outputs.

To log a function input or output, on the Convert to Fixed Point page, after converting your code,
click the Test arrow and select the Log inputs and outputs for comparison plots check box. In
the Log Data column of the Variables tab, select the check mark next to the function inputs and
outputs that you want to log. By default, all inputs and outputs of the top-level function are logged. To
log inputs and outputs of other functions in the call tree, select the function in the left pane, and then
select the variables that you want to log.

R2017b

12-8

https://www.mathworks.com/help/releases/R2017b/coder/ug/specify-number-of-input-or-output-arguments-to-generate.html

After you select the variables that you want to log, click Test.

The app runs a floating-point and fixed-point simulation. Then, it generates comparison plots and
calculates the difference error for all logged variables.

 Code Generation Workflow

12-9

To open the comparison plot, click the icon in the Max Diff column.

R2017b

12-10

Performance

Fast Fourier Transforms: Generate code that takes advantage of the
FFTW library
In previous releases, when you generated code for the MATLAB fast Fourier transform (FFT)
functions (fft, fft2, fftn, ifft, ifft2, and ifftn), the code generator produced code for the
FFT algorithms.

In R2017b, to improve the execution speed of code generated for FFT functions, the code generator
can produce calls to an FFT library. For MEX functions, the code generator uses the library that
MATLAB uses. For standalone C/C++ code (static library, dynamically linked library, or executable
program), to generate calls to a specific installed FFTW library, provide an FFT library callback class.
See Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls.

For more information about FFTW, see www.fftw.org.

In R2017b, for MEX functions, you can generate code for the MATLAB fftw function. For standalone
code, to specify a planning method, implement a getPlanMethod method in an FFT library callback
class.

memcpy and memset for Variable-Size Arrays and Variable Number of
Elements: Optimize code for more copies and assignments
By using the memcpy and memset optimizations, the code generator can produce faster, more
compact, and more readable code. In previous releases, the code generator used these optimizations
only for fixed-size arrays, when the number of array elements to copy or assign was known at compile
time. In R2017b, the code generator can use these optimizations for:

• Variable-size arrays.
• A variable number of elements (the number of elements to copy or assign is determined at run

time).

From a previous release, here is an example of generated C code that copies a variable number of
elements without the memcpy optimization:

for (i0 = 0; i0 <= loop_ub; i0++) {
 Y[i0] = 1.0;
}

From R2017b, here is the equivalent C code that copies a variable number of elements with the
memcpy optimization:

 memcpy(&Y[0], &tmp_data[0], (unsigned int)(loop_ub * (int)sizeof(double)));

When the number of elements to copy or assign is unknown at compile time:

• The code generator invokes the optimizations without regard to the memcpy/memset threshold
parameter.

• The code generator does not use the optimizations in code generated for copies or assignments
inside a MATLAB for-loop. For example, the code generator does not use the memcpy
optimization for MATLAB code such as:

 Performance

12-11

https://www.mathworks.com/help/releases/R2017b/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifftn.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/speed-up-fast-fourier-transforms-in-generated-standalone-code-by-using-fftw-library-calls.html
https://www.fftw.org
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fftw.html

for i = 1:n
Y(i) = X(i);
end

The code generator tries to use the memcpy optimization for MATLAB code such as:

Y(1:n) = X(1:n)

For more information, see memcpy Optimization and memset Optimization.

Global Variables for Constant Values of Aggregate Types: Reduce
memory usage in generated code
In R2017b, to reduce memory usage, the code generator identifies opportunities for functions in the
generated code to use global variables for assignment of constant values from aggregate types.
Aggregate types include arrays and structures. If the code generator detects that large variables in
multiple functions would have the same aggregate type and constant values, then it produces a global
variable that contains the constant values. The functions assign values from the global variable,
instead of creating a local copy of the values. For example, in this code, functions f and g assign
values from the global variable iv0 to the local variables m1 and m2.

extern const int32_T iv0[5];
 const int32_T iv0[5] = { 1,2,3,4,5 };
 void f(void)
 {
 int32_T m1;
 int32_T m2;
 m1 = iv0[1];
 m2 = iv0[1];
 }
 void g(void)
 {
 int32_T m1;
 m1 = iv0[1];
 }

Reduction of Duplicate Functions and Types: Generate more compact
code
In previous releases, the code generator could produce duplicate functions and types with the same
syntactic content. Duplication causes an increase in code size and compilation time.

In R2017b, the code generator can find and merge duplicate types and functions. If you define two
identical functions, the code generator does not merge them.

R2017b

12-12

https://www.mathworks.com/help/releases/R2017b/coder/ug/memcpy-optimization.html
https://www.mathworks.com/help/releases/R2017b/coder/ug/memset-optimization.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

12-13

https://www.mathworks.com/support/bugreports/

R2017a

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

13

MATLAB Programming for Code Generation

Value Classes as Entry-Point Function Arguments: Generate code for
more language constructs
In R2017a, for code generation, an object of a value class can be an entry-point function argument.
An entry-point function is a top-level function that you call from or from external C code.

For example, suppose that you define a value class mySquare and a function getarea that has an
input argument that is a value class object.

classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 if isnumeric(val)
 obj.side = val;
 else
 error('Value must be numeric')
 end
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end

function z = getarea(s)
%#codegen
z = calcarea(s);
end

In R2017a, you can generate code for getarea. When you generate code, specify that the input
argument s has the type of an object of the value class mySquare.

See Specify Objects as Inputs at the Command Line and Specify Objects as Inputs in the MATLAB
Coder™ App.

Nested Functions: Generate code for more language constructs
In R2017a, you can generate code for nested functions. For code generation, when you use nested
functions, adhere to these restrictions:

• If the parent function declares a persistent variable, it must assign the persistent variable before
it calls a nested function that uses the persistent variable.

• A nested recursive function cannot refer to a variable that the parent function uses.
• If a nested function refers to a structure variable, you must define the structure by using struct.
• If a nested function uses a variable defined by the parent function, you cannot use

coder.varsize with the variable in either the parent or the nested function.

R2017a

13-2

https://www.mathworks.com/help/releases/R2017a/coder/ug/define-value-class-inputs.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-value-class-inputs-in-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-value-class-inputs-in-the-matlab-coder-app.html

Also, you must adhere to the code generation restrictions for value classes and handle classes.

Handle classes in value classes
In R2017a, you can generate code for value classes that contain handle classes. The handle class can
be one that you define or a predefined handle class that is available with MATLAB or a MATLAB
toolbox. Predefined handle classes, such as toolbox System objects, must be supported for C/C++
code generation. See Functions and Objects Supported for C/C++ Code Generation — Category List.

For example, suppose that myclass is a value class and myhandle is a handle class. You can
generate C/C++ code for MATLAB code such as:

obj = myclass;
obj.p1 = myhandle;
obj.p2 = dsp.Mean;

The code generation limitations for handle class objects apply to handle class objects in value classes.
See Handle Object Limitations for Code Generation.

Class properties and structure fields passed by reference to external
C functions
To pass arguments by reference to an external C function, you use coder.ref, coder.rref, or
coder.wref in a coder.ceval call. For example:

...
x = 1;
y = coder.ceval('myCFunction', coder.ref(x));
...

In previous releases, to pass a class property or structure field by reference using coder.ref,
coder.rref, or coder.wref, you had to first assign the property or field to a variable. For example:

...
x = myClass;
x.prop = 1;
v = x.prop;
coder.ceval('foo', coder.ref(v));
...

In R2017a, you can directly pass a class property or structure field by reference. For example:

• Pass a class property

...
x = myClass;
x.prop = 1;
coder.ceval('foo', coder.ref(x.prop));
...

• Pass a structure field

...
s = struct('s1', struct('a', [0 1]));
coder.ceval('foo', coder.wref(s.s1.a));
...

 MATLAB Programming for Code Generation

13-3

https://www.mathworks.com/help/releases/R2017a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/memory-management-of-handle-objects-in-generated-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.rref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.wref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ceval.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.rref.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.wref.html

• Pass a field of an element of an array of structures

...
s = struct('c', [1 2], 'd', 2);
s1 = struct('a', [s s]);
coder.ceval('foo', coder.rref(s1.a(1).d));
...

Function specialization prevention with coder.ignoreConst
At compile time, if an input argument to a function call evaluates to a constant, the code generator
can use the constant value to produce function specializations. A function specialization is a version
of a function in which the input type, size, complexity, or value is customized for a particular
invocation of the function. To prevent function specializations due to constant arguments, instruct the
code generator to treat the value of the argument as a nonconstant value by using
coder.ignoreConst.

With compile-time recursion, the code generator produces function specializations instead of a
recursive call. If the specializations are due to a constant input argument to the recursive function,
you might be able to force run-time recursion by using coder.ignoreConst. See Force Code
Generator to Use Run-Time Recursion.

Size argument for coder.opaque
In R2017a, you can specify the size of a variable that you declare with coder.opaque. The syntax
with the size argument is:

x = coder.opaque(type,value,'Size', size)

Specify the size in bytes. For example, declare x1 to be a 4-byte integer with initial value 0.

x1 = coder.opaque('int','0', 'Size', 4);

R2017a

13-4

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ignoreconst.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.ignoreconst.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/recursive-function-generates-too-many-function-copies.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/recursive-function-generates-too-many-function-copies.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.opaque.html

Supported Functions

Automated Driving System Toolbox Code Generation: Generate code
for sensor fusion and tracking workflow
You can generate code for these Automated Driving System Toolbox™ tracking and sensor fusion
functions and classes.

cameas
cameasjac
constacc
constaccjac
constturn
constturnjac
constvel
constveljac
ctmeas
ctmeasjac
cvmeas
cvmeasjac
getTrackPositions
getTrackVelocities
initcaekf
initcakf
initcaukf
initctekf
initctukf
initcvekf
initcvkf
initcvukf
multiObjectTracker
objectDetection
trackingEKF
trackingKF
trackingUKF

For C/C++ code generation usage notes and limitations, see the function or class reference page.

 Supported Functions

13-5

https://www.mathworks.com/help/releases/R2017a/driving/ref/cameas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cameasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constacc.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constaccjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constturn.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constturnjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constvel.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/constveljac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ctmeas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/ctmeasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cvmeas.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/cvmeasjac.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackpositions.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/gettrackvelocities.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcaekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcakf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcaukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initctekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initctukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvekf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvkf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/initcvukf.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/multiobjecttracker-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/objectdetection-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingekf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingkf-class.html
https://www.mathworks.com/help/releases/R2017a/driving/ref/trackingukf-class.html

Code generation for more MATLAB functions
• cholupdate
• histcounts
• ismethod

For C/C++ code generation usage notes and limitations, see the function reference page.

Code generation for more Audio Toolbox System objects
audioPlayerRecorder

For C/C++ code generation usage notes and limitations, see the reference page.

Code generation for more Communications System Toolbox System
objects
comm.RBDSWaveformGenerator

For C/C++ code generation usage notes and limitations, see the reference page.

Code generation for more DSP System Toolbox System objects
• dsp.HampelFilter
• dsp.AsyncBuffer

For C/C++ code generation usage notes and limitations, see the System object reference page.

Code generation for more Phased Array System Toolbox functions and
System objects
• bw2range
• diagbfweights
• scatteringchanmtx
• waterfill
• phased.BackScatterSonarTarget
• phased.DopplerEstimator
• phased.IsoSpeedUnderWaterPaths
• phased.IsotropicHydrophone
• phased.IsotropicProjector
• phased.MultipathChannel
• phased.RangeEstimator
• phased.RangeResponse
• phased.ScatteringMIMOChannel

R2017a

13-6

https://www.mathworks.com/help/releases/R2017a/matlab/ref/cholupdate.html
https://www.mathworks.com/help/releases/R2017a/matlab/ref/histcounts.html
https://www.mathworks.com/help/releases/R2017a/matlab/ref/ismethod.html
https://www.mathworks.com/help/releases/R2017a/audio/ref/audioplayerrecorder-class.html
https://www.mathworks.com/help/releases/R2017a/comm/ref/comm.rbdswaveformgenerator-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hampelfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.asyncbuffer-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/bw2range.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/diagbfweights.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/scatteringchanmtx.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/waterfill.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.backscattersonartarget-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.dopplerestimator-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isospeedunderwaterpaths-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isotropichydrophone-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.isotropicprojector-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.multipathchannel-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.rangeestimator-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.rangeresponse-class.html
https://www.mathworks.com/help/releases/R2017a/phased/ref/phased.scatteringmimochannel-class.html

For C/C++ code generation usage notes and limitations, see the function or System object reference
page.

Code generation for more Robotics System Toolbox functions and
classes
• robotics.AimingConstraint
• robotics.Cartesianbounds
• robotics.GeneralizedInverseKinematics
• robotics.InverseKinematics
• robotics.Joint
• robotics.JointPositionBounds
• robotics.PoseTarget
• robotics.PositionTarget
• robotics.OrientationTarget
• robotics.RigidBody
• robotics.RigidBodyTree
• transformScan

For C/C++ code generation usage notes and limitations, see the function or class reference page.

Code generation for more Signal Processing Toolbox functions
• alignsignals
• cconv
• convmtx
• corrmtx
• envelope
• finddelay
• hilbert
• sgolayfilt
• sinc
• xcorr2
• xcov

For C/C++ code generation usage notes and limitations, see the function reference page.

Statistics and Machine Learning Toolbox Code Generation: Generate C
code for prediction by using linear models, generalized linear models,
decision trees, and ensembles of classification trees
You can generate C code that predicts responses by using trained linear models, generalized linear
models (GLM), decision trees, or ensembles of classification trees. The following prediction functions
support code generation.

 Supported Functions

13-7

https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.aimingconstraint-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.cartesianbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.generalizedinversekinematics-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.inversekinematics-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.joint-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.jointpositionbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.posetarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.positiontarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.orientationtarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbody-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/transformscan.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/alignsignals.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/cconv.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/convmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/corrmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/envelope.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/finddelay.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/hilbert.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sgolayfilt.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sinc.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcorr2.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcov.html

• predict — Predict responses or estimate confidence intervals on predictions by applying a linear
model to new predictor data.

• predict or glmval — Predict responses or estimate confidence intervals on predictions by
applying a GLM to new predictor data.

• predict or predict — Classify observations or estimate classification scores by applying a
classification tree or ensemble of classification trees, respectively, to new data.

• predict — Predict responses by applying a regression tree to new data.

Additionally, you can generate C code to simulate responses from a linear model or generalized linear
model using random or random, respectively.

Code generation for more WLAN System Toolbox functions and System
objects
• wlanDMGConfig
• wlanSymbolTimingEstimate
• wlanTGahChannel

For C/C++ code generation usage notes and limitations, see the function or class reference page.

R2017a

13-8

https://www.mathworks.com/help/releases/R2017a/stats/compactlinearmodel.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactgeneralizedlinearmodel.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/glmval.html
https://www.mathworks.com/help/releases/R2017a/stats/compactclassificationtree.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactclassificationensemble.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactregressiontree.predict.html
https://www.mathworks.com/help/releases/R2017a/stats/compactlinearmodel.random.html
https://www.mathworks.com/help/releases/R2017a/stats/compactgeneralizedlinearmodel.random.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlandmgconfig.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlansymboltimingestimate.html
https://www.mathworks.com/help/releases/R2017a/wlan/ref/wlantgahchannel-class.html

Generated Code Improvements

emxArray interface and utility files generated with single-file
partitioning
When the code generator uses dynamic memory allocation for variable-size arrays, it produces utility
functions that the generated code uses. For a function foo, these functions are in foo_util.c. The
declarations are in foo_util.h. If the variable-size arrays are entry-point function inputs or outputs,
the code generator produces functions for interfacing with emxArrays in the generated code. These
interface functions are in foo_emxAPI.c. The declarations are in foo_emxAPI.h.

In previous releases, if you chose to generate all C/C++ functions into a single file, the code
generator included these utility and emxArray interface functions, and their declarations, in that file.
It did not put the functions and declarations in separate files. In R2017a, the code generator always
produces separate files for these functions and their declarations, even if you choose single-file
partitioning. For example, it produces foo_util.c, foo_util.h, foo_emxAPI.c, and
foo_emxAPI.h.

Compatibility Considerations
In previous releases, if you chose to generate all C/C++ functions into a single file, you did not have
to include the header file for the emxArray interface functions in your C main file. In R2017a,
regardless of the file partitioning method, you must include this header file in your C main file. For
example, if the code generator produces foo_emxAPI.c and foo_emxAPI.h, include
foo_emxAPI.h in your C main file.

If you use MATLAB Coder to package your files, the packaging software includes the files generated
for the utility and emxArray interface functions. If you manually package the generated files, include
the utility and interface function files with the other files.

For information about emxArray interface functions, see C Code Interface for Arrays. For
information about changing the file partitioning method, see How MATLAB Coder™ Partitions
Generated Code. For information about packaging files, see Package Code for Other Development
Environments.

Additional C and C++ Keywords in List of Reserved Keywords
If your MATLAB code uses C or C++ reserved keywords for function or variable names, the code
generator tries to rename the generated identifiers. If renaming is not possible, then the code
generator produces an error. For example, if you use a reserved keyword for an entry-point function
name, the code generator produces an error.

In R2017a, the list of C and C++ reserved keywords contains additional keywords.

Here are the additional C reserved keywords.

assert limits stdatomic string
complex locale stdbool tgmath
ctype math stddef threads

 Generated Code Improvements

13-9

https://www.mathworks.com/help/releases/R2017a/coder/ug/c-code-interface-for-unbounded-arrays-and-structure-fields.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-matlab-coder-partitions-generated-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-matlab-coder-partitions-generated-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/package-code-for-other-development-environments.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/package-code-for-other-development-environments.html

errno setjmp stdint time
fenv signal stdio uchar
float stdalign stdlib wchar
inttypes stdarg stdnoreturn wctype
iso646

Here are the additional C++ reserved keywords.

algorithm csignal future ratio
any cstdalign initializer_list regex
array cstdarg iomanip scoped_allocator
atomic cstdbool ios set
bitset cstddef iosfwd shared_mutex
cassert cstdint iostream sstream
ccomplex cstdio istream stack
cctype cstdlib iterator stdexcept
cerrno cstring limits streambuf
cfenv ctgmath list string_view
cfloat ctime locale strstream
chrono cuchar map system_error
cinttypes cwchar memory thread
ciso646 cwctype memory_resource tuple
climits deque mutex type_traits
clocale exception new typeindex
cmath execution numeric typeinfo
codecvt filesystem optional unordered_map
complex foreward_list ostream unordered_set
condition_variable fstream queue utility
csetjmp functional random valarray

Compatibility Considerations
If your MATLAB code uses any of the additional C or C++ reserved keywords, in R2017a, code
generation might result in an error.

R2017a

13-10

Code Generation Workflow

Potential Differences Reporting: Identify MATLAB code that might
behave differently in generated code
Generation of efficient C/C++ code sometimes results in behavior differences between the generated
code and the original MATLAB code. In R2017a, the code generator detects and reports some of
these differences as potential differences. A potential difference is a difference that occurs at run
time only under certain conditions.

When potential differences reporting is enabled, the code generation report and the MATLAB Coder
app list potential differences messages on the Potential Differences tab. To highlight the MATLAB
code that corresponds to the message, click the message.

Reviewing and addressing potential differences before you deploy code helps you to avoid errors and
incorrect answers.

See Potential Differences Reporting and Potential Differences Messages.

More flexible specification of number of entry-point function
arguments
In R2017a, you can generate a MEX or a C/C++ function that has a different number of input or
output arguments than the original MATLAB function definition specifies. Consider this function:

function [x, y] = myops(a,b)
%#codegen
if (nargin > 1)
 x = a + b;
 y = a * b;
else
 x = a;
 y = -a;
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

To generate a function that returns only one argument, use the -nargout option of the codegen
command.

codegen myops -args {2 3} -nargout 1 -report

You can also use -nargout to specify the number of arguments for a function that uses varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)
%#codegen
if (nargin > 1)
 varargout{1} = a + b;
 varargout{2} = a * b;
else

 Code Generation Workflow

13-11

https://www.mathworks.com/help/releases/R2017a/coder/ug/potential-differences-between-generated-code-and-matlab-code.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/potential-differences-messages.html

 varargout{1} = a;
 varargout{2} = -a;
end

Generate code for one output argument.

codegen myops -args {2 3} -nargout 1 -report

See Specify Number of Entry-Point Function Input or Output Arguments to Generate.

MEX function generation and testing in one step with codegen -test
option
In R2017a, you can generate a MEX function and test it in one step by using the codegen -test
option. Provide a test file that calls the original MATLAB function. For example:

codegen myfunction -test myfunction_test

Before you generate standalone C/C++ code for your MATLAB code, it is a best practice to generate
a MEX function from your entry-point functions. Running the MEX function helps you to detect and
fix run-time errors that are much harder to diagnose in the generated code. It also helps you to verify
that the MEX function provides the same functionality as the original MATLAB code. It is also a best
practice to write a test file that calls your original MATLAB functions. If you have a test file, you can
use coder.runTest to run the test file, replacing the call to the original MATLAB function with a
call to the MEX function. By using the codegen -test option, you combine MEX generation and
testing in one step instead of generating the MEX function, and then calling coder.runTest.

The -test option is supported only when generating MEX functions or when using a configuration
object with VerificationMode set to 'SIL'. Creation of a configuration object that has the
VerificationMode parameter requires the Embedded Coder product.

This option is not supported with fixed-point conversion or single-precision conversion.

See Verify MEX Functions at the Command Line.

More fixed-size variable information in Convert to Fixed-Point step of
MATLAB Coder app
In R2017a, in the MATLAB Coder app, after you convert floating-point MATLAB code to fixed-point
MATLAB code, the app provides fixed-point type information for variables.

R2017a

13-12

https://www.mathworks.com/help/releases/R2017a/coder/ug/specify-number-of-input-or-output-arguments-to-generate.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.runtest.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/how-to-verify-a-mex-function-at-the-command-line.html

In the code pane of the Convert to Fixed-Point step, after fixed-point conversion, if you place your
cursor over a converted variable or expression, the app displays the fixed-point type information.

For a variable with a fixed-point type in the original code, when you place your cursor over the
variable before or after conversion, the app displays the fixed-point type information.

 Code Generation Workflow

13-13

Performance

Loop Invariant Code Motion: Generate optimized code for loops
In R2017a, MATLAB Coder uses loop invariant code motion to optimize for-loops and while-loops in
generated C code. Invariant code is code that does not change inside a loop. The loop invariant code
motion optimization moves invariant code outside of a loop so that it executes only once before the
loop instead of with each loop iteration.

Here is an example of a for-loop in C code generated in a previous release:

for (k = 0; k < 64; k++) {
 *offset = offsetFactor * params[4];
 outData[k] = (double)mask[k] * (*offset + inData[k]);
}

Here is the C code generated in R2017a:

*offset = offsetFactor * params[4];
for (k = 0; k < 64; k++) {
 outData[k] = (double)mask[k] * (*offset + inData[k]);
}

In R2017a, the loop invariant code motion optimization moves the invariant code outside of the loop.

Constant folding of value classes
In R2017a, you can use coder.const to constant-fold value classes.

The code generator tries to fold constant expressions into the generated code. Constant folding uses
the value of a constant expression instead of the expression in the generated code. Constant folding
can improve execution time because the generated code does not have to evaluate the expression
multiple times. You can try to force the code generator to constant-fold an expression by using
coder.const.

To constant-fold a value class object obj, use this syntax:

coder.const(obj)

To constant-fold the property prop, use this syntax:

coder.const(obj.prop)

You cannot constant-fold a value class object that is an entry-point function input argument.

New coder.unroll syntax for more readable code
In R2017a, coder.unroll has a new syntax that helps make your code more readable.

In previous releases, you put coder.unroll inside a for-loop. For example:

...
for i = coder.unroll(1:n)
 y(i) = rand();

R2017a

13-14

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.const.html
https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.unroll.html

end
...

With the new syntax, you put coder.unroll on a line by itself, immediately before the loop that it
unrolls. For example:

...
coder.unroll();
for i = 1:n
 y(i) = rand();
end
...

Here is an example of the new syntax with the flag argument:

...
unrollflag = n < 10;
coder.unroll(unrollflag);
for i = 1:n
 y(i) = rand();
end
...

Both the new syntaxes and the syntaxes from previous releases are supported. For more readable
code, use the new syntax.

For more information about coder.unroll and for-loop unrolling, see coder.unroll and Unroll
for-Loops.

 Performance

13-15

https://www.mathworks.com/help/releases/R2017a/coder/ref/coder.unroll.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/unroll-for-loops.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/unroll-for-loops.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2017a

13-16

https://www.mathworks.com/support/bugreports/

R2016b

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

14

MATLAB Programming for Code Generation

Recursive Functions and Anonymous Functions: Generate code for
more MATLAB language constructs
Recursive Functions

In R2016b, you can use recursive functions in MATLAB code that is intended for code generation. To
generate code for recursive functions, MATLAB Coder uses compile-time recursion or run-time
recursion. With compile-time recursion, the code generator creates multiple copies of the function in
the generated code. The inputs to the copies have different sizes or constant values. With run-time
recursion, the code generator produces recursive functions in the generated code. You can influence
whether the code generator uses compile-time or run-time recursion by modifying your MATLAB
code. You can disallow recursion or disable run-time recursion by modifying configuration
parameters. See Code Generation for Recursive Functions.

Anonymous Functions

In R2016b, you can use anonymous functions in MATLAB code that is intended for code generation.
For example, you can generate code for this MATLAB code that defines an anonymous function that
finds the square of a number:

sqr = @(x) x.^2;
a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB function that
evaluates an expression over a range of values. For example, this MATLAB code uses an anonymous
function to create the input to the fzero function:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0);

For code generation limitations for anonymous functions, see Code Generation for Anonymous
Functions.

Variable-Size Cell Array Support: Use cell to create a variable-size cell
array for code generation
In MATLAB code that is intended for code generation, to create a variable-size cell array, you can use
the cell function. For example:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

See Definition of Variable-Size Cell Array by Using cell.

R2016b

14-2

https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-recursive-functions.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-anonymous-functions.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/code-generation-for-anonymous-functions.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/cell.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/cell-array-restrictions-for-code-generation.html#bvczero

Code generation error for testing equality between enumeration and
character array
For code generation, an enumeration class must derive from a built-in numerical class. In R2016b,
MATLAB introduces a new behavior for testing equality between these enumerations and a character
array or cell array of character arrays. In previous releases, MATLAB compared the enumeration and
character array character-wise. The MATLAB Coder behavior matched the MATLAB behavior. In
R2016b, MATLAB compares the enumeration name with the character array. In R2016b, code
generation ends with this error message:

Code generation does not support comparing an enumeration to a character
array or cell array with the operators '==' and '~='

Consider this enumeration class:

classdef myColors < int8
 enumeration
 RED(1),
 GREEN(2)
 end
end

The following code compares an enumeration with the character vector 'RED':

mode = myColors.RED;
z = (mode == 'RED');

In previous releases, the answer in MATLAB and generated code was:

0 0 0

In R2016b, the answer in MATLAB is:

1

In R2016b, code generation ends with an error.

Compatibility Considerations
If you want the behavior of previous releases, cast the character array to a built-in numeric class. For
example, use the built-in class from which the enumeration derives.

mode = myColors.RED;
z = (mode == int8('RED'));

 MATLAB Programming for Code Generation

14-3

Supported Functions

I/O Support: Generate code for fseek, ftell, fwrite
• fseek
• ftell
• fwrite

See Data and File Management in MATLAB in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Statistics and Machine Learning Toolbox Code Generation: Generate
code for prediction by using SVM and logistic regression models
You can generate C code that classifies new observations by using trained, binary support vector
machine (SVM) or logistic regression models, or multiclass SVM or logistic regression via error-
correcting output codes (ECOC).

• saveCompactModel compacts and saves the trained model to disk.
• loadCompactModel loads the compact model in a prediction function that you declare. The

prediction function can, for example, accept new observations and return labels and scores.
• predict classifies and estimates scores for the new observations in the prediction function.

• To classify by using binary SVM models, see predict.
• To classify by using binary logistic regression models, see predict.
• To classify by using multiclass SVM or logistic regression via ECOC, see predict.

Communications and DSP Code Generation: Generate code for more
functions
Communications System Toolbox

• iqimbal
• comm.BasebandFileReader
• comm.BasebandFileWriter
• comm.EyeDiagram
• comm.PreambleDetector

See Communications System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

DSP System Toolbox

• dsp.MovingAverage
• dsp.MovingMaximum
• dsp.MovingMinimum

R2016b

14-4

https://www.mathworks.com/help/releases/R2016b/matlab/ref/fseek.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/ftell.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/fwrite.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/stats/savecompactmodel.html
https://www.mathworks.com/help/releases/R2016b/stats/loadcompactmodel.html
https://www.mathworks.com/help/releases/R2016b/stats/compactclassificationsvm.predict.html
https://www.mathworks.com/help/releases/R2016b/stats/classificationlinear.predict.html
https://www.mathworks.com/help/releases/R2016b/stats/compactclassificationecoc.predict.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/iqimbal.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilereader-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilewriter-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.eyediagram-class.html
https://www.mathworks.com/help/releases/R2016b/comm/ref/comm.preambledetector-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingaverage-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingmaximum-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingminimum-class.html

• dsp.MovingRMS
• dsp.MovingStandardDeviation
• dsp.MovingVariance
• dsp.MedianFilter
• dsp.BinaryFileReader
• dsp.BinaryFileWriter
• dsp.Channelizer
• dsp.ChannelSynthesizer

See DSP System Toolbox in Functions and Objects Supported for C/C++ Code Generation — Category
List.

Phased Array System Toolbox

• musicdoa
• pambgfun
• taylortaperc
• phased.GSCBeamformer
• phased.WidebandBackscatterRadarTarget
• phased.WidebandTwoRayChannel
• phased.MUSICEstimator
• phased.MUSICEstimator2D

See Phased Array System Toolbox in Functions and Objects Supported for C/C++ Code Generation —
Category List.

WLAN System Toolbox

• wlanFormatDetect
• wlanPacketDetect
• wlanS1GConfig

See WLAN System Toolbox in Functions and Objects Supported for C/C++ Code Generation —
Category List.

Wavelet Toolbox Code Generation: Generate code for discrete wavelet
analysis, synthesis, and denoising functions
In R2016b, you can use MATLAB Coder to generate code for 29 Wavelet Toolbox™ functions that
support:

• 1-D and 2-D discrete wavelet analysis, synthesis, and denoising
• 1-D undecimated discrete wavelet and wavelet packet analysis and synthesis

For the list of functions, see Wavelet Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

 Supported Functions

14-5

https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingrms-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingstandarddeviation-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingvariance-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.medianfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilereader-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilewriter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelizer-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelsynthesizer-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/musicdoa.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/pambgfun.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/taylortaperc.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.gscbeamformer-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandbackscatterradartarget-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandtworaychannel-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator-class.html
https://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator2d-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlanformatdetect.html
https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlanpacketdetect.html
https://www.mathworks.com/help/releases/R2016b/wlan/ref/wlans1gconfig.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu5xf_f
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bvcb28q
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Code generation for additional MATLAB functions
• cplxpair
• fminbnd
• inpolygon
• isenum
• polyeig
• repelem

See Functions and Objects Supported for C/C++ Code Generation — Alphabetical List.

Code generation for additional Audio Toolbox functions
• integratedLoudness
• loudnessMeter
• octaveFilter
• weightingFilter

See Audio System Toolbox in Functions and Objects Supported for C/C++ Code Generation —
Category List.

Code generation for additional Computer Vision Toolbox functions
• cameraPoseToExtrinsics
• extrinsicsToCameraPose
• worldToImage method of the cameraParameters object
• estimateEssentialMatrix
• estimateWorldCameraPose
• relativeCameraPose

See Computer Vision System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Code generation for additional Robotics System Toolbox functions
• robotics.BinaryOccupancyGrid
• robotics.OccupancyGrid
• robotics.OdometryMotionModel

• robotics.PRM — The map input must be specified on creation of the PRM object.

See Robotics System Toolbox in Functions and Objects Supported for C/C++ Code Generation —
Category List.

R2016b

14-6

https://www.mathworks.com/help/releases/R2016b/matlab/ref/cplxpair.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/fminbnd.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/inpolygon.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/isenum.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/polyeig.html
https://www.mathworks.com/help/releases/R2016b/matlab/ref/repelem.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/integratedloudness.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/loudnessmeter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/octavefilter-class.html
https://www.mathworks.com/help/releases/R2016b/audio/ref/weightingfilter-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/cameraposetoextrinsics.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/extrinsicstocamerapose.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/cameraparameters-class.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/estimateessentialmatrix.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/estimateworldcamerapose.html
https://www.mathworks.com/help/releases/R2016b/vision/ref/relativecamerapose.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.binaryoccupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.occupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.odometrymotionmodel-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.prm-class.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Code generation for extendedKalmanFilter and
unscentedKalmanFilter with Control System Toolbox or System
Identification Toolbox
You can generate code for the extendedKalmanFilter and unscentedKalmanFilter functions
with the Control System Toolbox™ or System Identification Toolbox™ products:

• extendedKalmanFilter.
• extendedKalmanFilter.
• unscentedKalmanFilter.
• unscentedKalmanFilter.

See System Identification Toolbox and Control System Toolbox in Functions and Objects Supported
for C/C++ Code Generation — Category List.

 Supported Functions

14-7

https://www.mathworks.com/help/releases/R2016b/control/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/ident/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu0exq0
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bvf1hfo
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Generated Code Improvements

Targeted Include Statements for coder.cinclude: Generate include
statements only where indicated
In previous releases, regardless of the location of a coder.cinclude(headerfile) call, MATLAB
Coder included the header file in almost all C/C++ source files, except for some utility files. The
include statement appeared in a file even if it was not required in that file. In R2016b, the location of
the coder.cinclude(headerfile) call determines which files include the header file. The header
file is included only in the C/C++ source files generated from the MATLAB code that contains the
coder.cinclude call. By reducing extraneous include statements, the R2016b behavior can reduce
compile time and make the generated code more readable.

To preserve the behavior from R2016a and earlier releases, use the following syntax:

coder.cinclude(headerfile,'InAllSourceFiles',true)

In a MATLAB Function block, the R2016b behavior for coder.cinclude(headerfile) is the same
as the behavior in previous releases. The syntax
coder.cinclude(headerfile,'InAllSourceFiles',allfiles) behaves the same as
coder.cinclude(headerfile).

Compatibility Considerations
If your code assumes that all header files specified by coder.cinclude calls are included in each
C/C++ source file, your code might not compile in R2016b. For example, suppose that all
coder.cinclude calls are in a separate function instead of with the coder.ceval calls. In R2016b,
the C/C++ files that contain the code generated from the coder.ceval calls do not include the
required header files.

To address this incompatibility, you can preserve the legacy behavior by using this syntax:

coder.cinclude(headerfile,'InAllSourceFiles',true)

To avoid the extraneous include statements, rewrite your code to place the coder.cinclude calls
with the coder.ceval calls that require them. Use this syntax:

coder.cinclude(headerfile)

See coder.cinclude.

Generated Code Readability: Generate more readable code for control
flow
In R2016b, MATLAB Coder simplifies the generated code for certain control flow patterns such as:

• Empty true branches
• If blocks with identical conditions or branches
• Nested if blocks that check the same condition

From a previous release, here is an example of generated C code that has an empty true branch.

R2016b

14-8

https://www.mathworks.com/help/releases/R2016b/coder/ref/coder.cinclude.html

double foo(double x)
{
 double y;
 y = 0.0;
 if (x > 10.0) {
 } else {
 y = 1.0;
 }

 return y;
}

In R2016b, MATLAB Coder generates the following code that does not include the empty true branch.

double foo(double x)
{
 double y;
 y = 0.0;
 if (!(x > 10.0)) {
 y = 1.0;
 }

 return y;
}

 Generated Code Improvements

14-9

Code Generation Workflow

Change to default standard math library for C++
In R2016b, the default standard math library for C++ is ISO/IEC 14882:2003 C++ (C++03 (ISO)).
In previous releases, the default standard math library for C++ was the same as the default standard
math library for C.

See Configure Build Settings and Change the Standard Math Library.

Simplified type definition in the MATLAB Coder app
In R2016b, you can more easily define input and global variable types in the MATLAB Coder app.

Entry-point input types and global variable types now appear in a combined table.

Undo/redo and tools menu actions apply to the items in the combined table.

Using new options, you can more easily define types for a group of types that meet certain conditions.

• After you define your input types, in one step, you can make types variable-size when they meet a
size threshold. If the test file that you use to automatically define input types results in fixed-size
types, use this option to make variable-size types.

You can specify a size threshold for making a dimension variable-size with an upper bound and a
threshold for making a dimension variable-size with no upper bound.

R2016b

14-10

https://www.mathworks.com/help/releases/R2016b/coder/ug/build-setting-configuration.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/standard-math-libraries.html

These rules apply to all current type definitions. If you change type definitions, the rules do not
affect the new definitions unless you apply them. See Make Dimensions Variable-Size When They
Meet Size Threshold.

• You can make all undefined types scalar double in one step. From the tools menu, select Define
all undefined as scalar double.

More discoverable build log and errors in MATLAB Coder app
In previous releases, in the Generate Code step, the MATLAB Coder app placed the Build Errors
and Build Log tabs on top of each other. To see a hidden tab, you opened a menu and selected the
tab.

In R2016b, the Build Errors tab is named the Errors tab, and the Build Log tab is named the
Target Build Log tab. These tabs are separate so that you can more easily find them.

Improved workflow for collecting and analyzing ranges in MATLAB
Coder app
The Simulate and Derive buttons on the Convert to Fixed Point page of the MATLAB Coder app
are now simplified and merged into a single Analyze button. This button controls which ranges
(simulation ranges, design ranges, and derived ranges) are collected and used in the data type
proposal phase of the conversion. When the Specify design ranges or the Analyze ranges using
derived range analysis option is selected, the Static Min and Static Max columns appear in the
table. These columns do not appear when only the Analyze ranges using simulation option is
selected, simplifying the view of the data. As in previous releases, you can control which ranges are
used for data type proposal in the Settings pane.

 Code Generation Workflow

14-11

https://www.mathworks.com/help/releases/R2016b/coder/ug/make-dimensions-variable-size-when-they-meet-size-threshold.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/make-dimensions-variable-size-when-they-meet-size-threshold.html

More discoverable logs and reports for fixed-point conversion in
MATLAB Coder app
In previous releases, in the Convert to Fixed Point step, the MATLAB Coder app displayed logs and
report links for range analysis, fixed-point conversion, and verification on separate tabs that were
placed on top of each other. To see a hidden tab, you opened a menu and selected the tab.

In R2016b, the app displays logs and report links for range analysis and fixed-point conversion on the
Output tab. It displays logs and report links for verification on the Verification Output tab. These
tabs are separate so that you can more easily find them.

R2016b

14-12

Hierarchical packaging of generated code in MATLAB Coder app
In previous releases, the MATLAB Coder app packaged generated files in a zip file as a single, flat
folder. In R2016b, you can choose flat or hierarchical packaging.

1 On the Finish Workflow page, click Package.
2 For Save as type, select Flat zip file or Hierarchical zip file. The default value is

Flat zip file.

 Code Generation Workflow

14-13

Performance

JIT MEX Compilation: Use JIT compilation to reduce code generation
times for MEX
In R2016b, you can speed up generation of MEX functions by specifying use of just-in-time (JIT)
compilation technology. When you iterate between modifying MATLAB code and testing the MEX
code, this option can save time.

By default, MATLAB Coder does not use JIT compilation. It creates a C /C++ MEX function by
generating and compiling C/C++ code. When you specify JIT compilation, MATLAB Coder creates a
JIT MEX function that contains an abstract representation of the MATLAB code. When you run the JIT
MEX function, MATLAB generates the executable code in memory.

JIT compilation is incompatible with some code generation features or options, such as custom code
or use of the OpenMP library for parallelization of for-loops (parfor). If you specify JIT compilation
and MATLAB Coder is unable to use it, it generates a C/C++ MEX function with a warning.

In the MATLAB Coder app, to specify use of JIT compilation:

1 In the Generate dialog box, set Build type to MEX.
2 Select the Use JIT compilation check box.

At the command line, to specify use of JIT compilation, use the -jit option of the codegen
command. Alternatively, use the EnableJIT MEX code configuration parameter.

See Speed Up MEX Generation by Using JIT Compilation.

When generating MEX functions in the Check for Run-Time Issues step, the MATLAB Coder app
tries to use JIT compilation. If the app is unable to use it, it generates a C/C++ MEX function. You can
disable JIT compilation in the Check for Run-Time Issues step. See Check for Run-Time Issues by
Using the App.

Change in default value for preserve variable names option
In R2016b, the default value for the PreserveVariableNames code configuration parameter is
'None' instead of 'UserNames'. When this parameter is 'None', to reduce memory usage,
MATLAB Coder tries to reuse variables in the generated code. When this parameter is 'UserNames',
to generate more readable, traceable code, MATLAB Coder preserves your variable names in the
generated code.

The equivalent MATLAB Coder app setting is Preserve variable names. In R2016b, the default value
for this setting is None .

Compatibility Considerations
In R2016b, when you use the default value for the preserve variable names option, MATLAB Coder
does not preserve your variable names in the generated code. If code readability is more important
than reduced memory usage, change the value of this option. At the command line, set the
PreserveVariableNames code configuration parameter to 'UserNames'. In the MATLAB Coder
app, project build settings, on the All Settings tab, set Preserve variable names to User names.

R2016b

14-14

https://www.mathworks.com/help/releases/R2016b/coder/ug/speed-up-mex-generation-by-using-jit-compilation.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/check-for-run-time-issues-in-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2016b/coder/ug/check-for-run-time-issues-in-the-matlab-coder-app.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

14-15

https://www.mathworks.com/support/bugreports/

R2016a

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

15

MATLAB Programming for Code Generation
Cell Array Support: Use additional cell array features in MATLAB code
for code generation
In R2016a, code generation support for cell arrays includes:

Use of {end + 1} to grow a cell array

You can write code such as X{end + 1} to grow a cell array X. For example:

X = {1 2};
X(end + 1} = 'a';

When you use {end + 1} to grow a cell array, follow the restrictions described in Growing a Cell
Array by Using {end + 1}.

Value and handle objects in cell arrays

Cell arrays can contain value and handle objects. You can use a cell array of objects as a workaround
for the limitation that code generation does not support objects in matrices or structures.

Function handles in cell arrays

Cell arrays can contain function handles.

Concatenation of Variable-Size Empty Arrays: Generate code for
concatenation when a component array is empty
In R2016a, the MATLAB Coder treatment of an empty array in a concatenation more closely matches
the MATLAB treatment.

For concatenation of arrays, MATLAB and MATLAB Coder require that corresponding dimensions
across component arrays have the same size, except for the dimension that grows. For horizontal
concatenation, the second dimension grows. For vertical concatenation, the first dimension grows.

In MATLAB, when a component array is empty, the sizes of the nongrowing dimensions do not matter
because MATLAB ignores empty arrays in a concatenation. In previous releases, MATLAB Coder
required that the sizes of nongrowing dimensions of a variable-size, empty array matched the sizes of
the corresponding dimensions in the other component arrays. A dimension size mismatch resulted in
an error in the MEX function and a possible incorrect answer in standalone code.

In R2016a, for most cases of empty arrays in concatenation, MATLAB Coder behavior matches
MATLAB behavior. In some cases, if MATLAB Coder does not recognize the empty array and treats it
as a variable-size array, a dimension size mismatch results in a compile-time error.

Consider the function myconcat that concatenates two arrays.

function C = myconcat(A, B)
 C = [A, B];
end

Define the types IN1 and IN2. IN1 is variable-size in both dimensions with no upper bounds. IN2 is
variable-size with an upper bound of 5 in each dimension.

R2016a

15-2

https://www.mathworks.com/help/releases/R2016a/coder/ug/cell-array-restrictions-for-code-generation.html#bu6ihbl
https://www.mathworks.com/help/releases/R2016a/coder/ug/cell-array-restrictions-for-code-generation.html#bu6ihbl

IN1 = coder.typeof(1, [Inf Inf], [1 1]);
IN2 = coder.typeof(1, [5 5], [1 1]);

Generate MEX for myconcat. Use the -args option to indicate that the input arguments have the
types defined by IN1 and IN2.

codegen myconcat -args {IN1, IN2} -report

Define R1 and R2.

R1 = zeros(0,5);
R2 = magic(3)

R1 is a 0-by-5 empty matrix. R2 is a 3-by-3 matrix.

In previous releases, myconcat_mex(R1, R2) resulted in a size mismatch error. The size of
dimension 1 of the empty array R1 did not match the size of dimension 1 of R2. In R2016a,
myconcat_mex(R1, R2) produces the same answer as the answer in MATLAB.

ans =

 8 1 6
 3 5 7
 4 9 2

Compatibility Considerations
When the result of the concatenation is assigned to a variable that must be fixed-size, support for a
variable-size, empty array in a concatenation introduces an incompatibility.

In previous releases, it is possible that a concatenation that included a variable-size array produced a
fixed-size array because concatenation rules were stricter in MATLAB Coder than in MATLAB. In
R2016a, a concatenation that includes a variable-size array produces a variable-size array. If the
result of the concatenation is assigned to a variable that must be fixed-size, the code generation
software produces a compile-time error.

Consider the function myconcat.

function Z = myconcat1(X, Y)
%#codegen
Z.f = [X Y];

Suppose that you generate a MEX function for myconcat1. Suppose that you specify these sizes for
the input arguments:

• X has size :?-by-2. The first dimension has a variable size with no upper bound and the second
dimension has a fixed size of 2.

• Y has size 2-by-4.

In the generated code, the size of the result of [X Y] is 2-by-:6. The first dimension has a fixed size of
2 and the second dimension has a variable size with an upper bound of 6. This size accommodates
both an empty and nonempty X. If you pass an empty X to myconcat_mex, the size of the result is 2-
by-4. If you pass a nonempty X to myconcat_mex, the size of the result is 2-by-6.

Consider the function myconcat2.

 MATLAB Programming for Code Generation

15-3

function Z = myconcat2(X, Y)
%#codegen
Z.f = ones(2, 6);
myfcn(Z);
Z.f = [X Y];

function myfcn(~)

myconcat2 assigns a 2-by-6 value to Z.f. At compile time, the size of Z.f is fixed at 2-by-6 because
Z is passed to myfcn. In the assignment Z.f = [X Y], the result of the concatenation[X Y] is
variable-size. Code generation fails because the left side of the assignment is fixed-size and the right
side is variable-size.

To work around this incompatibility, you can use coder.varsize to declare that Z.f is variable-size.

function Z = myconcat2(X, Y)
%#codegen
coder.varsize('Z.f');
Z.f = ones(2, 6);
myfcn(Z);
Z.f = [X Y];

function myfcn(~)

R2016a

15-4

Supported Functions

Non-Power-of-Two FFT Support: Generate code for fast Fourier
transforms for non-power-of-two transform lengths
In previous releases, code generation required a power of two transform length for fft, fft2, fftn,
ifft, ifft2, and ifftn. In R2016a, code generation allows a non-power-of-two length for these
functions.

Computer Vision System Toolbox and Image Processing Toolbox Code
Generation: Generate code for additional functions
See C code generation support in the Computer Vision System Toolbox™ release notes.

See C-code generation: Generate code from 20 additional functions using MATLAB Coder.

xcorr Code Generation: Generate faster code for xcorr with long input
vectors
For long input vectors, code generation for xcorr now uses a frequency-domain calculation instead
of a time-domain calculation. The resulting code can be faster than in previous releases.

To use the xcorr function, you must have the Signal Processing Toolbox software.

Code generation for additional MATLAB functions
Specialized Math in MATLAB

• airy
• besseli
• besselj

Trigonometry in MATLAB

• deg2rad
• rad2deg

Interpolation and Computational Geometry in MATLAB

• interpn

Changes to code generation support for MATLAB functions
• Code generation now supports the nanflag option for sum, mean, median, min, max, cov, var,

and std.
• Code generation for ismember no longer requires that the second input be sorted.

 Supported Functions

15-5

https://www.mathworks.com/help/releases/R2016a/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ifftn.html
https://www.mathworks.com/help/releases/R2016a/vision/release-notes.html#bu1fkvt-15
https://www.mathworks.com/help/releases/R2016a/images/release-notes.html#bu4zyzd-1
https://www.mathworks.com/help/releases/R2016a/signal/ref/xcorr.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/airy.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/besseli.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/besselj.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/deg2rad.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/rad2deg.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/interpn.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/sum.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/cov.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/var.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/std.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/ismember.html

Code generation for Audio Toolbox functions and System objects
See Audio System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

Code generation for additional Communications System Toolbox
functions
• convenc
• dpskdemod
• dpskmod
• qammod
• qamdemod
• vitdec

See Communications System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional DSP System Toolbox
• audioDeviceWriter
• dsp.Differentiator
• designMultirateFIR
• dsp.SubbandAnalysisFilter
• dsp.SubbandSynthesisFilter

See DSP System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

Code generation for additional Phased Array System Toolbox functions
• fogpl
• gaspl
• rainpl
• phased.BackscatterRadarTarget
• phased.LOSChannel
• phased.WidebandLOSChannel

See Phased Array System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional Robotics System Toolbox functions
• robotics.ParticleFilter

See Robotics System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

R2016a

15-6

https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/convenc.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/dpskdemod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/dpskmod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/qammod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/qamdemod.html
https://www.mathworks.com/help/releases/R2016a/comm/ref/vitdec.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.differentiator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/designmultiratefir.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandanalysisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandsynthesisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/fogpl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/gaspl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/rainpl.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.backscatterradartarget-class.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.loschannel-class.html
https://www.mathworks.com/help/releases/R2016a/phased/ref/phased.widebandloschannel-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/robotics.particlefilter-class.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html

Code generation for WLAN System Toolbox functions and System
objects
See WLAN System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

 Supported Functions

15-7

https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu5xf_f
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/functions-supported-for-code-generation--categorical-list.html

Code Generation Workflow

MATLAB Coder Student Access: Obtain MATLAB Coder as student-use,
add-on product or with MATLAB Primary and Secondary School Suite
Starting with R2016a, MATLAB Coder is available for purchase as an add-on product for student-use
software: MATLAB Student™ and MATLAB and Simulink Student Suite™. Student-use software
provides the same tools that professional engineers and scientists use. Students use the software to
develop skills that help them excel in courses and prepare for careers.

Starting with R2016a, MATLAB Coder is included in the MATLAB Primary and Secondary School
Suite.

MATLAB Coder App Line Execution Count: See how well test exercises
MATLAB code
When you perform the Check for Run-Time Issues step in the MATLAB Coder app, you must
provide a test that calls your entry-point functions with representative data. The Check for Run-
Time Issues step generates a MEX function from your MATLAB functions and runs the test replacing
calls to the MATLAB functions with calls to the MEX function. In R2016a, to help you see how well
your test exercises your MATLAB code, the app collects and displays line execution counts. When the
app runs the MEX function, the app counts executions of the MEX code that corresponds to a line of
MATLAB code.

To see the line execution counts, after you check for run-time issues, click View MATLAB line
execution counts.

The app displays your MATLAB code in the app editor. The app displays a color-coded coverage bar to
the left of the code. This table describes the color coding.

R2016a

15-8

Color Indicates
Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

When you position your cursor over the coverage bar, the color highlighting extends over the code.
For each section of code, the app displays the number of times that the section executes.

Line execution count collection is enabled by default. To disable the collection, clear the Collect
MATLAB line execution counts check box. If line execution collection slows the run-time issue
checking, consider disabling it.

See Collect and View Line Execution Counts for Your MATLAB Code.

MATLAB Coder App Undo and Redo: Easily revert changes to type
definitions
In R2016a, you can revert and restore changes to type definitions in the Define Input Types step of
the MATLAB Coder app. Revert and restore changes in the input arguments table or the global
variables table.

 Code Generation Workflow

15-9

https://www.mathworks.com/help/releases/R2016a/coder/ug/collect-and-view-line-execution-counts-for-your-matlab-code.html

To revert or restore changes to input argument type definitions, above the input arguments table,
click or .

To revert or restore changes to global variable type definitions, above the global variables table, click
 or .

Alternatively, use the keyboard shortcuts for Undo and Redo. The keyboard shortcuts apply to the
table that is selected. The shortcuts are defined in your MATLAB preferences. On a Windows
platform, the default keyboard shortcuts for Undo and Redo are Ctrl+Z and Ctrl+Y.

Each undo operation reverts the last change. Each redo operation restores the last change.

See Define Keyboard Shortcuts.

MATLAB Coder App Error Table: View complete error message
In previous releases, the MATLAB Coder app truncated a message that did not fit on one line of the
error message table on the Build Errors tab in the Check for Run-Time Issues or Generate Code
steps. In R2016a, the app displays the entire message.

R2016a

15-10

https://www.mathworks.com/help/releases/R2016a/matlab/matlab_env/keyboard-shortcuts.html

In previous releases, if a message included a link, the app excluded the link from the error in the
error message table on the Build Errors tab. In R2016a, the app includes the link.

Changes to Fixed-Point Conversion Code Coverage
If you use the MATLAB Coder app to convert your MATLAB code to fixed-point code and propose
types based on simulation ranges, the app shows code coverage results. In previous releases, the app
showed the coverage as a percentage. In R2016a, the app shows the coverage as a line execution
count.

 Code Generation Workflow

15-11

See Code Coverage in Automated Fixed-Point Conversion.

Fixed-point conversion requires the Fixed-Point Designer™ software.

More Keyboard Shortcuts in Code Generation Report: Navigate the
report more easily
In R2016a, you can use keyboard shortcuts to perform the following actions in a code generation
report.

Action Default Keyboard Shortcut for a Windows
Platform

Zoom in Ctrl+Plus
Zoom out Ctrl+Minus
Evaluate selected MATLAB code F9
Open help for selected MATLAB code F1

R2016a

15-12

https://www.mathworks.com/help/releases/R2016a/coder/ug/fixed-point-conversion.html#bt1s0y3
https://www.mathworks.com/help/releases/R2016a/coder/ug/fixed-point-conversion.html

Action Default Keyboard Shortcut for a Windows
Platform

Open selected MATLAB code Ctrl+D
Step backward through files that you opened in
the code pane

Alt+Left

Step forward through files that you opened in the
code pane

Alt+Right

Refresh F5
Find Ctrl+F

Your MATLAB preferences define the keyboard shortcuts associated with these actions. You can also
select these actions from a context menu. To open the context menu, right-click anywhere in the
report.

See Define Keyboard Shortcuts and Code Generation Reports.

 Code Generation Workflow

15-13

https://www.mathworks.com/help/releases/R2016a/matlab/matlab_env/keyboard-shortcuts.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/code-generation-reports.html

Performance

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific LAPACK library
To improve the execution speed of code generated for algorithms that call linear algebra functions,
MATLAB Coder can generate calls to LAPACK functions by using the LAPACKE C interface to
LAPACK. If the input arrays for the linear algebra functions meet certain criteria, MATLAB Coder
generates calls to relevant LAPACK functions. In R2015b, only generated MEX called LAPACK
functions. In R2016a, generated standalone code can call LAPACK functions.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library in some linear
algebra functions such as eig and svd. For MEX functions, MATLAB Coder uses the LAPACK library
that is included with MATLAB. For standalone code, MATLAB Coder uses the LAPACKE interface for
the LAPACK library that you specify. If you do not specify a LAPACK library, MATLAB Coder generates
code for the linear algebra function instead of generating a LAPACK call.

See Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls.

memset Optimization for More Cases: Optimize code that assigns a
constant value to consecutive array elements
To optimize generated code that assigns a literal constant to consecutive array elements, the code
generation software tries to replace the code with a memset call. A memset call can be more efficient
than code, such as a for-loop or multiple, consecutive element assignments.

In R2016a, MATLAB Coder invokes the memset optimization for more cases than in previous releases.

A loop with multiple assignments.

Previous Releases R2016a
for (i = 0; i < 100; i++) {
 Y1[i] = 0.0;
 Y2[i] = 0.0;
 Y3[i] = 0.0;
 }

memset(&Y1[0],0,100U*sizeof(double));
memset(&Y2[0],0,100U*sizeof(double));
memset(&Y3[0],0,100U*sizeof(double));

Consecutive statements that define a continuous write.

Previous Releases R2016a
Y1[0] = 255;
Y1[1] = 255;
Y1[2] = 255;
...
Y1[99] = 255

memset(&Y1[0], 255, 100U * sizeof(unsigned char));

A structure that contains an array.

Previous Releases R2016a
for (i = 0; i < 100; i++) {
 S->f1[i] = 0.0;

memset(&S>f1[0], 0, 100U * sizeof(double));

All fields of a structure array assigned the same constant value.

R2016a

15-14

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lapacke.html
https://www.mathworks.com/help/releases/R2016a/coder/ug/generate-code-that-calls-lapack-functions.html

Previous Releases R2016a
for (i = 0; i < 100; i++) {
 S[i].f1 = 255;
 S[i].f2 = 255;
 S[i].f3 = 255;
}

 memset(&S[0], 255, 100U * sizeof(struct0_T));

For information about settings that affect the memset optimization, see memset Optimization.

Optimization for Conditional and Boolean Expressions: Generate
efficient code for more cases
For certain conditional and Boolean expressions, MATLAB Coder optimizes the generated code by
replacing expressions with simpler, more efficient expressions. In R2016a, MATLAB Coder uses this
optimization for more cases.

Here are examples of this optimization.

Previous Releases R2016a
if (cond) {
 y = true;
 } else {
 y = val;
 }

 return y;

return cond || val;

y = x && !x; y = false;

 Performance

15-15

https://www.mathworks.com/help/releases/R2016a/coder/ug/memset-optimization.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2016a

15-16

https://www.mathworks.com/support/bugreports/

R2015aSP1

Version: 2.8.1

Bug Fixes

16

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2015aSP1

16-2

https://www.mathworks.com/support/bugreports/

R2015b

Version: 3.0

New Features

Bug Fixes

Compatibility Considerations

17

Cell Array Support: Generate C code from MATLAB code that uses cell
arrays
In R2015b, you can generate code from MATLAB code that uses cell arrays.

The code generation software classifies a cell array as homogeneous or heterogeneous. This
classification determines how a cell array is represented in the generated C/C++ code. It also
determines how you can use the cell array in MATLAB code from which you generate C/C++ code.
See Homogeneous vs. Heterogeneous Cell Arrays.

As long as you do not specify conflicting requirements, you can control whether a cell array is
homogeneous or heterogeneous. See Control Whether a Cell Array is Homogeneous or
Heterogeneous.

When you use cell arrays in MATLAB code from which you generate C/C++ code, you must follow
certain restrictions. See Cell Array Requirements and Limitations for Code Generation.

Faster MEX Functions for Linear Algebra: Generate MEX functions that
take advantage of LAPACK
To improve the speed of the MEX generated for algorithms that call linear algebra functions, the
generated MEX can now call LAPACK functions. If the input arrays for the linear algebra functions
meet certain criteria, MATLAB Coder generates calls to relevant LAPACK functions.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library in some linear
algebra functions such as eig and svd. MATLAB Coder uses the LAPACK library that is included with
MATLAB.

For information about the open source reference version, see LAPACK — Linear Algebra PACKage.

Double-Precision to Single-Precision Conversion: Convert double-
precision MATLAB code to single-precision C code
In R2015b, if you have a Fixed-Point Designer license, you can convert double-precision MATLAB
code to single-precision MATLAB code or single-precision C code.

You can develop code for embedded hardware that requires single-precision code without changing
your original MATLAB algorithm. You can verify the single-precision code using the same test files
that you use for your original algorithm. When a double-precision operation cannot be removed, the
code generation report highlights the MATLAB expression that results in that operation.

You can generate single-precision code in the following ways:

• Generate single-precision C code by using the MATLAB Coder app. See Generate Single-Precision
C Code Using the MATLAB Coder App .

• Generate single-precision C code by using codegen with the -singleC option. See Generate
Single-Precision C Code at the Command Line.

• Generate single-precision MATLAB code by using codegen with a coder.SingleConfig object.
Optionally, you can generate single-precision C code from the single-precision MATLAB code. See
Generate Single-Precision MATLAB Code.

R2015b

17-2

https://www.mathworks.com/help/releases/R2015b/coder/ug/homogeneous-vs-heterogeneous-cell-arrays.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/cell-array-restrictions-for-code-generation.html
https://www.netlib.org/lapack/
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-using-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-using-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-c-code-at-the-command-line.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-single-precision-matlab-code-and-optionally-generate-single-precision-c-code.html

Run-Time Checks in Standalone C Code: Detect and report run-time
errors while testing generated standalone libraries and executables
In R2015b, generated standalone libraries and executables can detect and report run-time errors
such as out-of-bounds array indexing. In previous releases, only generated MEX detected and
reported run-time errors.

By default, run-time error detection is enabled for MEX. By default, run-time error detection is
disabled for standalone libraries and executables.

To enable run-time error detection for standalone libraries and executables:

• At the command line, use the code configuration property RuntimeChecks.

cfg = coder.config('lib'); % or 'dll' or 'exe'
cfg.RuntimeChecks = true;
codegen -config cfg myfunction

• Using the MATLAB Coder app, in the project build settings, on the Debugging tab, select the
Generate run-time error checks check box.

The generated libraries and executables use fprintf to write error messages to stderr and abort
to terminate the application. If fprintf and abort are not available, you must provide them. Error
messages are in English.

See Run-Time Error Detection and Reporting in Standalone C/C++ Code and Generate Standalone
Code That Detects and Reports Run-Time Errors.

Multicore Capable Functions: Generate OpenMP-enabled C code from
more than twenty MATLAB mathematics functions
For code generation, some MATLAB mathematics functions now use parfor to create loops that run
in parallel on shared-memory multicore platforms. Loops that run in parallel can be faster than loops
that run on a single thread.

Some functions use parfor when the number of elements warrants parallelism. These functions
include interp1, interp2, interp3, and most functions in Specialized Math in MATLAB. Some
functions use parfor when they operate on columns and when the number of columns to process
warrants parallelism. These functions include filter, median, mode, sort, std, and var.

If your compiler does not support the Open Multiprocessing (OpenMP) application interface, MATLAB
Coder treats the parfor-loops as for-loops. In the generated code, the loop iterations run on a
single thread. See https://www.mathworks.com/support/compilers/current_release/.

Image Processing Toolbox and Computer Vision System Toolbox Code
Generation: Generate code for additional functions in these toolboxes
Image Processing Toolbox

bwareaopen houghpeaks immse integralBoxFilter
grayconnected imabsdiff imresize psnr

 Check bug reports for issues and fixes

17-3

https://www.mathworks.com/help/releases/R2015b/coder/ug/run-time-error-detection-and-reporting-in-standalone-cc-code.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-code-that-includes-run-time-error-checks.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/generate-code-that-includes-run-time-error-checks.html
https://www.mathworks.com/help/releases/R2015b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq3r5jn-1
https://www.mathworks.com/help/releases/R2015b/images/ref/bwareaopen.html
https://www.mathworks.com/help/releases/R2015b/images/ref/houghpeaks.html
https://www.mathworks.com/help/releases/R2015b/images/ref/immse.html
https://www.mathworks.com/help/releases/R2015b/images/ref/integralboxfilter.html
https://www.mathworks.com/help/releases/R2015b/images/ref/grayconnected.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imabsdiff.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imresize.html
https://www.mathworks.com/help/releases/R2015b/images/ref/psnr.html

hough imcrop imrotate
houghlines imgaborfilt imtranslate

See Image Processing Toolbox in Functions and Objects Supported for C and C++ Code Generation
— Category List.

Computer Vision System Toolbox

• cameraPose
• detectCheckerboardPoints
• extractLBPFeatures
• generateCheckerboardPoints
• insertText
• opticalFlowFarneback

See Computer Vision System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Statistics and Machine Learning Toolbox Code Generation: Generate
code for kmeans and randsample
• kmeans
• randsample

See Statistics and Machine Learning Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Simplified hardware specification in the MATLAB Coder app
In R2015b, redesigned dialog boxes simplify the way that you specify hardware settings on the
Generate Code page and on the project build settings Hardware tab. The redesign consolidates
hardware settings, supports use of installed hardware support packages for processor-in-the-loop
(PIL) execution, and hides hardware implementation details until you want to see them. Use of
hardware support packages and PIL execution with MATLAB Coder requires an Embedded Coder
license.

Here is the redesigned Generate Code page.

R2015b

17-4

https://www.mathworks.com/help/releases/R2015b/images/ref/hough.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imcrop.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imrotate.html
https://www.mathworks.com/help/releases/R2015b/images/ref/houghlines.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imgaborfilt.html
https://www.mathworks.com/help/releases/R2015b/images/ref/imtranslate.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/camerapose.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/detectcheckerboardpoints.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/extractlbpfeatures.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/generatecheckerboardpoints.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/inserttext.html
https://www.mathworks.com/help/releases/R2015b/vision/ref/opticalflowfarneback-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/stats/kmeans.html
https://www.mathworks.com/help/releases/R2015b/stats/randsample.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Here is the redesigned project build settings Hardware tab.

The changes include:

• Toolchain settings on the Generate Code page and on the project build settings Hardware tab
replace the Toolchain tab.

• The Standard math library and Code replacement library, formerly on the Hardware tab, are
now on the Custom Code tab.

• You can specify the Hardware board instead of the Device vendor and Device type. The app
populates Device vendor and Device type based on the hardware board. To specify the hardware
on which MATLAB is running, select MATLAB Host Computer. To specify the device vendor and
type, select None — Select device below.

If you have an Embedded Coder license, you can select a board for an installed hardware support
package. For R2015b, the hardware support packages are:

 Check bug reports for issues and fixes

17-5

• Embedded Coder Support Package for BeagleBone® Black Hardware
• Embedded Coder Support Package for ARM Cortex-A Processors

For information about using hardware support packages with MATLAB Coder, see the Embedded
Coder release notes.

• On the Hardware tab, the app hides the hardware implementation details. To see or modify the
hardware implementation details, click Customize hardware implementation. By default, the
test and production hardware implementation settings are the same. The app shows only one set
of settings. To display or modify the test and production hardware implementation settings
separately, on the All Settings tab, under Hardware, set Test hardware is the same as
production hardware to No.

MATLAB Coder app user interface improvements
Improvements for manual type definition

Improvements for manual type definition include:

• Context menu options to specify array size.

• Easier definition of structure types.

• Use the icon to add fields.
• See the structure type name in the table of input variables.

• Easier definition of embedded.fi types.

• See the numerictype properties in the table of input variables.

• Use the icon to change the numerictype properties.

Tab completion for specifying files

You can use tab completion to specify entry-point functions and test files.

R2015b

17-6

Compatibility between the app colors and MATLAB preferences

The app uses colors that are compatible with the Desktop tool colors preference in the MATLAB
preferences. For information about MATLAB preferences, see Preferences.

Progress indicators for the Check for Run-Time Issues step

When you perform the Check for Run-Time Issues step, you can see progress indicators.

Saving and restoring of workflow state between MATLAB Coder app
sessions
In R2015b, when you complete the Check for Run-Time Issues or Generate Code steps and close
the project, the MATLAB Coder app saves the step results. When you reopen the project, you do not
have to repeat the step. You can continue from where you left off.

Project reuse between MATLAB Coder and HDL Coder
In R2015b, you can open a MATLAB Coder project in the HDL Coder™ app. You can open an HDL
Coder project in the MATLAB Coder app. You must have an HDL Coder license to use the HDL Coder
app. When you move between apps, the project settings for both apps are saved. For example, when
you open a MATLAB Coder project in the HDL Coder app, the app uses the settings that are common
to both apps. It saves the settings that it does not use so that if you open the project in the MATLAB
Coder app, those settings are available.

To open a MATLAB Coder project as an HDL Coder project:

•
In the MATLAB Coder app, click and select Reopen project as HDL Coder.

• In the HDL Coder app, click the Open tab and specify the project.

To open an HDL Coder project as a MATLAB Coder project:

•
In the HDL Coder app, click and select Reopen in MATLAB Coder.

 Check bug reports for issues and fixes

17-7

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_env/preferences.html

•
In the MATLAB Coder app, click and select Open existing project.

Code generation using freely available MinGW-w64 compiler
In R2015b, you can use the MinGW-w64 compiler from TDM-GCC to generate C/C++ MEX, libraries,
and executables on a 64-bit Windows host. For installation instructions, see Install MinGW-w64
Compiler.

When you generate code for C/C++ libraries and executables, you can specify a MinGW compiler
toolchain. If you use the command-line workflow, set the Toolchain property in a code configuration
object for a library or executable:

cfg = coder.config('lib')
cfg.Toolchain = 'MinGW64 v4.x | gmake (64-bit Windows)'

If you use the MATLAB Coder app, in the project build settings, on the Hardware tab, set Toolchain
to MinGW64 v4.x | gmake (64-bit Windows).

codegen debug option for libraries and executables
In R2015b, for lib, dll, and exe targets, you can use the -g option of the codegen command to
enable the compiler debug mode. In previous releases, the -g option enabled the compiler debug
mode for MEX targets only.

If you enable debug mode, the C compiler disables some optimizations. The compilation is faster, but
the execution is slower.

Compatibility Considerations
In R2015b, for lib, dll, and exe targets, the -g option enables the compiler debug mode. In
previous releases, for lib, dll, and exe targets, codegen ignored the -g option. The compiler
generated the same code as when you omitted the -g option.

Code generation for additional MATLAB functions
Data Types in MATLAB

• cell
• fieldnames
• struct2cell

See Data Types in MATLAB in Functions and Objects Supported for C and C++ Code Generation —
Category List.

String Functions in MATLAB

• iscellstr
• strjoin

R2015b

17-8

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html
https://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html
https://www.mathworks.com/help/releases/R2015b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/cell.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/fieldnames.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/struct2cell.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#br5wf33-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/iscellstr.html
https://www.mathworks.com/help/releases/R2015b/matlab/ref/strjoin.html

See String Functions in MATLAB in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects
Communications System Toolbox

comm.CoarseFrequencyCompensator

See Communications System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

DSP System Toolbox

• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.AllpassFilter

See DSP System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

Phased Array System Toolbox

• phased.TwoRayChannel
• phased.GCCEstimator
• phased.WidebandRadiator
• phased.SubbandMVDRBeamformer
• phased.WidebandFreeSpace
• gccphat

See Phased Array System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for Robotics System Toolbox functions and System
objects
See Robotics System Toolbox in Functions and Objects Supported for C and C++ Code Generation —
Category List.

Code generation for System Identification Toolbox functions and
System objects
See System Identification Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

 Check bug reports for issues and fixes

17-9

https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/comm/ref/comm.coarsefrequencycompensator-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.tworaychannel-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.gccestimator-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandradiator-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.subbandmvdrbeamformer-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandfreespace-class.html
https://www.mathworks.com/help/releases/R2015b/phased/ref/gccphat.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#buymxey
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bu0exq0
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2015b/coder/ug/functions-supported-for-code-generation--categorical-list.html

Fixed-Point Conversion Enhancements
Saving and restoring fixed-point conversion workflow state in the app

If you close a project before completing the fixed-point conversion process, the app saves your work.
When you reopen the project, the app restores the state. You do not have to repeat the fixed-point
conversion steps that you completed in a previous session. For example, suppose that you close the
project after data type proposal. When you reopen the project, the app shows the results of the data
type proposal and enables conversion. You can continue where you left off.

Reuse of MEX files during fixed-point conversion using the app

During fixed-point conversion, the app minimizes the number of times that it regenerates MEX files.
The app rebuilds the MEX files only when required by changes in your code.

Specification of additional fimath properties in app editor

You can control all fimath properties of variables in your code from within the app editor. To modify
the fimath settings of a variable, select a variable and click FIMATH in the dialog box. You can alter
the Rounding method, Overflow action, Product mode, and Sum mode properties. For more
information on these properties, see fimath.

You can also modify these properties from the fixed-point conversion settings dialog box. To open the
settings dialog box, on the Convert to Fixed Point page, click the Settings arrow .

Improved management of comparison plots

During fixed-point conversion, the app docks plots that are generated during the testing phase of
your fixed-point code into separate tabs of one figure window. Each tabbed figure represents one
input or output variable and is labeled with the function, variable, word length, and a timestamp.
Each tab contains three subplots. The plots use a time series-based plotting function to show the
floating-point and fixed-point results and the difference between them.

Subsequent iterations are also plotted in the same figure window.

R2015b

17-10

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html

Variable specializations

On the Convert to Fixed Point page of the app, in the Variables table, you can view variable
specializations.

 Check bug reports for issues and fixes

17-11

Detection of multiword operations

When an operation has an input or output larger than the largest word size of your processor, the
generated code contains multiword operations. Multiword operations can be inefficient on hardware.
The expensive fixed-point operations check now highlights expressions in your MATLAB code that can
result in multiword operations in generated code.

R2015b

17-12

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

17-13

https://www.mathworks.com/support/bugreports/

R2015a

Version: 2.8

New Features

Bug Fixes

Compatibility Considerations

18

Improved MATLAB Coder app with integrated editor and simplified
workflow
In R2015a, the MATLAB Coder app has a new user interface for the code generation workflow.

The improved app includes:

• Automatic checks for code generation readiness and run-time issues. The code generation
readiness checks include identification of unsupported functions.

• An integrated editor to fix issues in your MATLAB code without leaving the app.
• A project summary and access to generated files.
• Export of project settings in the form of a MATLAB script.
• Help for each step and links to documentation for more information.

See C Code Generation Using the MATLAB Coder App.

R2015a

18-2

https://www.mathworks.com/help/releases/R2015a/coder/gs/generating-c-code-from-matlab-code-using-the-matlab-coder-project-interface.html

Generation of example C/C++ main for integration of generated code
into an application
In R2015a, you can generate an example C/C++ main function when generating source code, a static
library, a dynamic library, or an executable. You modify the example main function to meet the
requirements of your application.

An example main function provides a template that helps you incorporate generated code into your
application. The template shows how to initialize function input arguments to zero and call entry-
point functions. Generating an example main function is especially useful when the code uses
dynamic memory allocation for data. See Use an Example C Main in an Application.

By default, MATLAB Coder generates an example main function when generating source code, a
static library, a dynamic library, or an executable.

To control generation of an example main function using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Generate example main to one of the following:

• Do not generate an example main function
• Generate, but do not compile, an example main function (default)
• Generate and compile an example main function

To control generation of an example main function using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe
2 Set the GenerateExampleMain property to one of the following:

• 'DoNotGenerate'
• 'GenerateCodeOnly' (default)
• 'GenerateCodeAndCompile'

For example:

cfg.GenerateExampleMain = 'GenerateCodeOnly';

Better preservation of MATLAB variable names in generated code
To reduce memory usage, when possible, variables share names and memory in the generated code.
In previous releases, this variable reuse optimization reused your variable names for other variables

 Check bug reports for issues and fixes

18-3

https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-and-modify-an-example-cc-main-function.html

or replaced your variable names with the names of other variables. In R2015a, by default, this
optimization preserves your variable names—it does not replace or reuse them. Other optimizations,
however, can remove your variable names from the generated code. See Variable Reuse in Generated
Code.

Compatibility Considerations
If your MATLAB code uses large arrays or structures, in some cases, the extra memory to preserve
your variable names can affect performance. To reduce memory usage, specify that the variable reuse
optimization does not have to preserve variable names:

• Using a project, in the Project Settings dialog box, on the All Settings tab, set Preserve variable
names to None.

• Using the command-line interface, set the configuration object property
PreserveVariableNames to None.

See Reuse Large Arrays and Structures.

More efficient generated code for logical indexing
Code generated for logical array indexing is faster and uses less memory than in previous releases.
For example, the generated code for the following function is more efficient than in previous releases.

function x = foo(x,N)
assert(all(size(x) == [1 100]))
x(x>N) = N;

In R2015a, you do not have to replace x(x>N) = N with a for-loop to improve performance.

Code generation for additional Computer Vision System Toolbox and
Computer Vision System Toolbox functions
Image Processing Toolbox

• bweuler
• bwlabel
• bwperim
• regionprops
• watershed

See Image Processing in MATLAB.

Computer Vision System Toolbox

• cameraMatrix
• cameraParameters
• extrinsics
• opticalFlow
• opticalFlowHS

R2015a

18-4

https://www.mathworks.com/help/releases/R2015a/coder/ug/local-variable-reuse.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/local-variable-reuse.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/reuse-large-user-defined-local-variables.html
https://www.mathworks.com/help/releases/R2015a/images/ref/bweuler.html
https://www.mathworks.com/help/releases/R2015a/images/ref/bwlabel.html
https://www.mathworks.com/help/releases/R2015a/images/ref/bwperim.html
https://www.mathworks.com/help/releases/R2015a/images/ref/regionprops.html
https://www.mathworks.com/help/releases/R2015a/images/ref/watershed.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bujhzwx
https://www.mathworks.com/help/releases/R2015a/vision/ref/cameramatrix.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/cameraparameters-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/extrinsics.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflow-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowhs-class.html

• opticalFlowLK
• opticalFlowLKDoG
• reconstructScene
• rectifyStereoImages
• stereoParameters
• triangulate
• undistortImage
• vision.DeployableVideoPlayer on Mac platform.

In previous releases, vision.DeployableVideoPlayer supported code generation on Linux
and Windows platforms. In R2015a, vision.DeployableVideoPlayer also supports code
generation on a Mac platform.

See Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects
Communications System Toolbox

• comm.CarrierSynchronizer
• comm.FMBroadcastDemodulator
• comm.FMBroadcastModulator
• comm.FMDemodulator
• comm.FMModulator
• comm.SymbolSynchronizer

See Communications System Toolbox.

DSP System Toolbox

• iirparameq
• dsp.HighpassFilter
• dsp.LowpassFilter

See DSP System Toolbox.

Phased Array System Toolbox

• pilotcalib
• phased.UCA
• phased.MFSKWaveform

See Phased Array System Toolbox

 Check bug reports for issues and fixes

18-5

https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowlk-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflowlkdog-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/reconstructscene.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/rectifystereoimages.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/stereoparameters-class.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/triangulate.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/undistortimage.html
https://www.mathworks.com/help/releases/R2015a/vision/ref/vision.deployablevideoplayer-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.carriersynchronizer-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastdemodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastmodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmdemodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmmodulator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.symbolsynchronizer-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2015a/dsp/ref/iirparameq.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2015a/phased/ref/pilotcalib.html
https://www.mathworks.com/help/releases/R2015a/phased/ref/phased.uca-class.html
https://www.mathworks.com/help/releases/R2015a/phased/ref/phased.mfskwaveform-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss

Code generation for additional Statistics and Machine Learning
Toolbox functions
• betafit
• betalike
• pca
• pearsrnd

See Statistics and Machine Learning Toolbox.

Code generation for additional MATLAB functions
Linear Algebra

• bandwidth
• isbanded
• isdiag
• istril
• istriu
• lsqnonneg

See Linear Algebra in MATLAB.

Statistics in MATLAB

• cummin
• cummax

See Statistics in MATLAB

Code generation for additional MATLAB function options
• dimension option for cumsum and cumprod

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical List.

Conversion from project to MATLAB script using MATLAB Coder app
In previous releases, to convert a project to a MATLAB script, you used the -tocode option of the
coder command. In R2015a, you can also use the MATLAB Coder app to convert a project to a script.
Before you convert a project to a script, complete the Define Input Types step.

To convert a project to a script using the MATLAB Coder app, on the workflow bar, click , and
then select Convert to script.

See Convert MATLAB Coder Project to MATLAB Script.

R2015a

18-6

https://www.mathworks.com/help/releases/R2015a/stats/betafit.html
https://www.mathworks.com/help/releases/R2015a/stats/betalike.html
https://www.mathworks.com/help/releases/R2015a/stats/pca.html
https://www.mathworks.com/help/releases/R2015a/stats/pearsrnd.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2015a/matlab/ref/bandwidth.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/isbanded.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/isdiag.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/istril.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/istriu.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/lsqnonneg.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cummin.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cummax.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-30
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2015a/matlab/ref/cumprod.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-a-matlab-script-to-build-a-project.html

Improved recognition of compile-time constants
In previous releases, the code generation software recognized that structure fields or array elements
were constant only when all fields or elements were constant. In R2015a, in some cases, the software
can recognize constant fields or constant elements even when some structure fields or array elements
are not constant.

For example, consider the following code. Field s.a is constant and field s.b is not constant:

function y = create_array(x)
s.a = 10;
s.b = x;
y = zeros(1, s.a);

In previous releases, the software did not recognize that field s.a was constant. In the generated
code, if variable-sizing was enabled, y was a variable-size array. If variable-sizing was disabled, the
code generation software reported an error. In R2015a, the software recognizes that s.a is a
constant. y is a static row vector with 10 elements.

As a result of this improvement, you can use individual assignments to assign constant values to
structure fields. For example:

function y = mystruct(x)
s.a = 3;
s.b = 4;
y = zeros(s.a,s.b);

In previous releases, the software recognized the constants only if you defined the complete structure
using the struct function: For example:

function y = mystruct(x)
s = struct('a', 3, 'b', 4);
y = zeros(s.a,s.b);

In some cases, the code generation software cannot recognize constant structure fields or array
elements. See Code Generation for Constants in Structures and Arrays.

Compatibility Considerations
The improved recognition of constant fields and elements can cause the following differences
between code generated in R2015a and code generated in previous releases:

• A function output can be more specific in R2015a than it was in previous releases. An output that
was complex in previous releases can be real in R2015a. An array output that was variable-size in
previous releases can be fixed-size in R2015a.

• Some branches of code that are present in code generated using previous releases are eliminated
from the generated code in R2015a.

Improved emxArray interface function generation
When you generate code that uses variable-size data, MATLAB Coder exports functions that you can
use to create and interact with emxArrays in your generated code. R2015a includes the following
improvements to emxArray interface functions:

 Check bug reports for issues and fixes

18-7

https://www.mathworks.com/help/releases/R2015a/coder/ug/code-generation-for-constants-in-arrays-and-structures.html

emxArray interface functions for variable-size arrays that external C/C++ functions use

When you use coder.ceval to call an external C/C++ function, MATLAB Coder generates emxArray
interface functions for the variable-size arrays that the external function uses.

Functions to initialize output emxArrays and emxArrays in structure outputs

MATLAB Coder generates functions to initialize emxArrays that are outputs or emxArrays that are
in structure outputs.

A function that creates an empty emxArray on the heap has a name of the form:

emxInitArray_<baseType>

<baseType> is the type of the elements of the emxArray. The inputs to this function are a pointer to
an emxArray pointer and the number of dimensions. For example:
void emxInitArray_real_T(emxArray_real_T **pEmxArray, int numDimensions);

A function that creates empty emxArrays in a structure has a name of the form:

void emxInitArray_<structType>

<structType> is the type of the structure. The input to this function is a pointer to the structure
that contains the emxArrays. For example:

void emxInitArray_cstruct0_T(cstruct0_T *structure);

MATLAB Coder also generates functions that free the dynamic memory that the functions that create
the emxArrays allocate. For example, the function that frees dynamic memory that
emxInitArray_real_T allocates is:

void emxDestroyArray_real_T(emxArray_real_T *emxArray)

The function that frees dynamic memory that emxInitArray_cstruct0_T allocates is:

void emxDestroyArray_struct0_T(struct0_T *structure)

See C Code Interface for Arrays.

External definition of a structure that contains emxArrays

In previous releases, MATLAB Coder did not allow external definition of a structure that contained
emxArrays. If you defined the structure in C code and declared it in an external header file, MATLAB
Coder reported an error.

In R2015a, MATLAB Coder allows external definition of a structure that contains emxArrays.
However, do not define the type of the emxArray in the external C code. MATLAB Coder defines the
types of the emxArrays that a structure contains.

Code generation for casts to and from types of variables declared
using coder.opaque
For code generation, you can use the MATLAB cast function to cast a variable to or from a variable
that is declared using coder.opaque. Use cast with coder.opaque only for numeric types.

R2015a

18-8

https://www.mathworks.com/help/releases/R2015a/coder/ug/c-code-interface-for-unbounded-arrays-and-structure-fields.html
https://www.mathworks.com/help/releases/R2015a/coder/ref/coder.opaque.html

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B =
cast(A,type) syntax. For example:

x = coder.opaque('size_t','0');
x1 = cast(x, 'int32');

You can also use the B = cast(A,'like',p) syntax. For example:

x = coder.opaque('size_t','0');
x1 = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder.opaque, you must use the B
= cast(A,'like',p) syntax. For example:

x = int32(12);
x1 = coder.opaque('size_t', '0');
x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

• Inputs to C/C++ functions that you call using coder.ceval.
• Variables that you assign to outputs from C/C++ functions that you call using coder.ceval.

Without this casting, it is possible to receive compiler warnings during code generation.

Consider this MATLAB code:

yt = coder.opaque('size_t', '42');
yt = coder.ceval('foo');
y = cast(yt, 'int32');

• coder.opaque declares that yt has C type size_t.
• y = cast(yt, 'int32') converts yt to int32 and assigns the result to y.

Because y is a MATLAB numeric type, you can use y as you would normally use a variable in your
MATLAB code.

The generated code looks like:

size_t yt= 42;
int32_T y;
y = (int32_T)yt;

It is possible that the explicit cast in the generated code prevents a compiler warning.

Generation of reentrant code without an Embedded Coder license
In previous releases, generation of reentrant code required an Embedded Coder license. In R2015a,
you can generate reentrant code using MATLAB Coder without an Embedded Coder license.

See Reentrant Code.

 Check bug reports for issues and fixes

18-9

https://www.mathworks.com/help/releases/R2015a/coder/ug/reentrant-code.html

Code generation for parfor-loops with stack overflow
In previous releases, you could not generate code for parfor-loops that contained variables that did
not fit on the stack. In R2015a, you can generate code for these parfor-loops. See Algorithm
Acceleration Using Parallel for-Loops (parfor).

Change in default value of the PassStructByReference code
configuration object property
The PassStructByReference code configuration object property controls whether the codegen
command generates pass by reference or pass by value structures for entry-point input and output
structures.

In previous releases, the default value of PassStructByReference was false. By default,
codegen generated pass by value structures. This default behavior differed from the MATLAB Coder
app default behavior. The app generated pass by reference structures.

In R2015a, the value of PassStructByReference is true. By default, codegen generates pass by
reference structures. The default behavior now matches the default behavior of the MATLAB Coder
app.

See Pass Structure Arguments by Reference or by Value.

Compatibility Considerations
For an entry-point function with structure arguments, if the PassStructByReference property has
the default value, codegen generates a different function signature in R2015a than in previous
releases.

Here is an example of a function signature generated in R2015a using the codegen command with
the PassStructByReference property set to the default value, true:

void my_struct_in(const struct0_T *s, double y[4])

my_struct_in passes the input structure s by reference.

The signature for the same function generated in previous releases, using the codegen command
with the PassStructByReference property set to the default value, false is:

void my_struct_in(const struct0_T s, double y[4])

my_struct_in passes the input structure s by value.

To control whether codegen generates pass by reference or pass by value structures, set the
PassStructByReference code configuration object property. For example, to generate pass by
value structures:

cfg = coder.config('lib');
cfg.PassStructByReference = false;

Change in GLOBALS variable in scripts generated from a project
A script generated from a MATLAB Coder project that uses global variables creates the variable
GLOBALS. In previous releases, GLOBALS stored the types of global variables. The initial values of the

R2015a

18-10

https://www.mathworks.com/help/releases/R2015a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/pass-structure-arguments-by-reference-or-value.html

global variables were specified directly in the codegen command. In R2015a, GLOBALS stores both
the types and the initial values of global variables. The codegen command obtains the initial values
from GLOBALS.

See Convert MATLAB Coder Project to MATLAB Script.

Target build log display for command-line code generation when
hyperlinks disabled
In previous releases, if hyperlinks were disabled, you could not access the code generation report to
view compiler or linker messages in the target build log. In R2015a, when hyperlinks are disabled,
you see the target build log in the Command Window.

If you use the -nojvm startup option when you start MATLAB, hyperlinks are disabled. See
Commonly Used Startup Options.

For more information about the target build log, see View Target Build Information.

Removal of instrumented MEX output type
You can no longer specify the output type Instrumented MEX.

Compatibility Considerations
For manual fixed-point conversion, use the command-line workflow. This workflow uses the Fixed-
Point Designer functions buildInstrumentedMex and showInstrumentationResults. See
Manually Convert a Floating-Point MATLAB Algorithm to Fixed Point.

Truncation of long enumerated type value names that include the
class name prefix
In previous releases, when the code generation software determined the length or uniqueness of a
generated enumerated type value name, it ignored the class name prefix. If you specified that a
generated enumerated type value name included the class name prefix, it is possible that the
generated type value name:

• Exceeded the maximum identifier length that you specified.
• Was the same as another identifier.

In R2015a, if you specify that a generated enumerated type value name includes the class name
prefix, the generated type value name:

• Does not exceed the maximum identifier length.
• Is unique.

Compatibility Considerations
For a long type value name that includes the class name prefix, the name generated in previous
releases can be different from the name generated in R2015a. For example, consider the enumerated
type:

 Check bug reports for issues and fixes

18-11

https://www.mathworks.com/help/releases/R2015a/coder/ug/generate-a-matlab-script-to-build-a-project.html
https://www.mathworks.com/help/releases/R2015a/matlab/matlab_env/commonly-used-startup-options.html
https://www.mathworks.com/help/releases/R2015a/coder/ug/code-generation-reports.html#br19yw3-15
https://www.mathworks.com/help/releases/R2015a/fixedpoint/gs/manually-convert-a-floating-point-matlab-algorithm-to-fixed-point.html

classdef Colors < int32
 enumeration
 Red (1)
 Green678911234567892123456789312 (2)
 end
 methods (Static)
 function p = addClassNameToEnumNames()
 p = true;
 end
 end
end

Suppose that the maximum identifier length is the default value, 31. In previous releases, the
generated name for the enumerated value Green678911234567892123456789312 was
Colors_Green678911234567892123456789312. The length of the name exceeded 31 characters.
In R2015a, the truncated name is 31 characters. Assuming that the generated name does not clash
with another name, the name in R2015a is Colors_Green6789112345678921234. External code
that uses the long name generated in the previous release cannot interface with the code generated
in R2015a.

To resolve this issue, if possible, increase the maximum identifier length:

• At the command line, set MaxIdLength.
• In the MATLAB Coder app, in the project build settings, on the Code Appearance tab, set

Maximum identifier length.

Fixed-point conversion enhancements
Support for multiple entry-point functions

Fixed-point conversion now supports multiple entry-point functions. You can generate C/C++ library
functions to integrate with larger applications.

Support for global variables

You can now convert MATLAB algorithms that contain global variables to fixed-point code without
modifying your MATLAB code.

Code coverage-based translation

During fixed-point conversion, MATLAB Coder now detects dead and constant folded code. It warns
you if any parts of your code do not execute during the simulation of your test file. This detection can
help you verify if your test file is testing the algorithm over the intended operating range. The
software uses this code coverage information during the translation of your code from floating-point
MATLAB code to fixed-point MATLAB code. The software inserts inline comments in the fixed-point
code to mark the dead and untranslated regions. It includes the code coverage information in the
generated fixed-point conversion HTML report.

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses colon syntax for multi-output assignments, reducing the number of fi casts in the generated
fixed-point code.

R2015a

18-12

• Preserves the indentation and formatting of your original algorithm, improving the readability of
the generated fixed-point code.

Automated fixed-point conversion of additional DSP System Toolbox objects

If you have a DSP System Toolbox™ license, you can now convert the following DSP System Toolbox
System objects to fixed-point:

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter, direct form and direct form transposed only
• dsp.LUFactor
• dsp.VariableFractionalDelay
• dsp.Window

You can propose and apply data types for these System objects based on simulation range data. Using
the MATLAB Coder app, during the conversion process, you can view simulation minimum and
maximum values and proposed data types for these System objects. You can also view whole number
information and histogram data. You cannot propose data types for these System objects based on
static range data.

New interpolation method for generating lookup table MATLAB function replacements

The coder.approximation function now offers a 'Flat' interpolation method for generating
lookup table MATLAB function replacements. This fully specified lookup table achieves high speeds
by discarding the prelookup step and reducing the use of multipliers in the data path. This
interpolation method is available from the command-line workflow, and in the Function
Replacements tab of the Fixed-Point Conversion step.

 Check bug reports for issues and fixes

18-13

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html
https://www.mathworks.com/help/releases/R2015a/coder/ref/coder.approximation.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2015a

18-14

https://www.mathworks.com/support/bugreports/

R2014b

Version: 2.7

New Features

Bug Fixes

Compatibility Considerations

19

Code generation for additional Image Processing Toolbox and
Computer Vision System Toolbox functions
Image Processing Toolbox

bwdist imadjust intlut ordfilt2
bwtraceboundary imclearborder iptcheckmap rgb2ycbcr
fitgeotrans imlincomb medfilt2 stretchlim
histeq imquantize multithresh ycbcr2rgb

For the list of Image Processing Toolbox functions supported for code generation, see Image
Processing Toolbox.

Computer Vision System Toolbox

• bboxOverlapRatio
• selectStrongestBbox
• vision.DeployableVideoPlayer on Linux

For the list of Computer Vision System Toolbox functions supported for code generation, see
Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox and
DSP System Toolbox functions and System objects
Communications System Toolbox

• iqcoef2imbal
• iqimbal2coef
• comm.IQImbalanceCompensator

For the list of Communications System Toolbox™ functions supported for code generation, see
Communications System Toolbox.

DSP System Toolbox

• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FarrowRateConverter
• dsp.FilterCascade

You cannot generate code directly from this System object. You can use the
generateFilteringCode method to generate a MATLAB function. You can generate C/C++
code from this MATLAB function.

• dsp.FIRDecimator for transposed structure
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator

R2014b

19-2

https://www.mathworks.com/help/releases/R2014b/images/ref/bwdist.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imadjust.html
https://www.mathworks.com/help/releases/R2014b/images/ref/intlut.html
https://www.mathworks.com/help/releases/R2014b/images/ref/ordfilt2.html
https://www.mathworks.com/help/releases/R2014b/images/ref/bwtraceboundary.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imclearborder.html
https://www.mathworks.com/help/releases/R2014b/images/ref/iptcheckmap.html
https://www.mathworks.com/help/releases/R2014b/images/ref/rgb2ycbcr.html
https://www.mathworks.com/help/releases/R2014b/images/ref/fitgeotrans.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imlincomb.html
https://www.mathworks.com/help/releases/R2014b/images/ref/medfilt2.html
https://www.mathworks.com/help/releases/R2014b/images/ref/stretchlim.html
https://www.mathworks.com/help/releases/R2014b/images/ref/histeq.html
https://www.mathworks.com/help/releases/R2014b/images/ref/imquantize.html
https://www.mathworks.com/help/releases/R2014b/images/ref/multithresh.html
https://www.mathworks.com/help/releases/R2014b/images/ref/ycbcr2rgb.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2014b/vision/ref/bboxoverlapratio.html
https://www.mathworks.com/help/releases/R2014b/vision/ref/selectstrongestbbox.html
https://www.mathworks.com/help/releases/R2014b/vision/ref/vision.deployablevideoplayer-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2014b/comm/ref/iqcoef2imbal.html
https://www.mathworks.com/help/releases/R2014b/comm/ref/iqimbal2coef.html
https://www.mathworks.com/help/releases/R2014b/comm/ref/comm.iqimbalancecompensator-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html

• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseExtractor
• dsp.SampleRateConverter
• dsp.StateLevels

For the list of DSP System Toolbox functions and System objects supported for code generation, see
DSP System Toolbox.

Code generation for enumerated types based on built-in MATLAB
integer types
In previous releases, enumeration types were based on int32. In R2014b, you can base an
enumerated type on one of the following built-in MATLAB integer data types:

• int8
• uint8
• int16
• uint16
• int32

You can use the base type to control the size of the enumerated type in the generated code. You can
choose a base type to:

• Represent an enumerated type as a fixed-size integer that is portable to different targets.
• Reduce memory usage.
• Interface to legacy code.
• Match company standards.

The base type determines the representation of the enumerated types in the generated C and C++
code. For the base type int32, the code generation software generates a C enumeration type. For
example:

enum LEDcolor
{
 GREEN = 1,
 RED
};

typedef enum LEDcolor LEDcolor;

For the other base types, the code generation software generates a typedef statement for the
enumerated type and #define statements for the enumerated values. For example:

typedef short LEDColor;
#define GREEN ((LEDColor)1)
#define RED((LEDColor)2)

See Enumerated Types Supported for Code Generation.

 Check bug reports for issues and fixes

19-3

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktopeak-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktorms-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.phaseextractor-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.statelevels-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2014b/coder/ug/enumerated-types-supported-for-code-generation.html

Code generation for function handles in structures
You can now generate code for structures containing fields that are function handles. See Function
Handle Definition for Code Generation.

Change in enumerated type value names in generated code
In previous releases, by default, the enumerated type value name in the generated code included a
class name prefix, for example, LEDcolor_GREEN. In R2014b, by default, the generated enumerated
type value name does not include the class name prefix. To generate enumerated type value names
that include the class name prefix, in the enumerated type definition, modify the
addClassNameToEnumNames method to return true instead of false:

classdef(Enumeration) LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods(Static)
 function y = addClassNameToEnumNames()
 y = true;
 end
 end
end

See Control Names of Enumerated Type Values in Generated Code.

Compatibility Considerations
The name of an enumerated type value in code generated using previous releases differs from the
name generated using R2014b. If you have code that uses one of these names, modify the code to use
the R2014b name or generate the name so that it matches the name from a previous release. If you
want an enumerated type value name generated in R2014b to match the name from a previous
release, in the enumerated types definition, modify the addClassNameToEnumNames method to
return true instead of false.

Code generation for ode23 and ode45 ordinary differential equation
solvers
• ode23
• ode45
• odeget
• odeset

See Numerical Integration and Differentiation in MATLAB.

R2014b

19-4

https://www.mathworks.com/help/releases/R2014b/coder/ug/how-working-with-function-handles-is-different-for-code-generation.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/how-working-with-function-handles-is-different-for-code-generation.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/control-names-of-enumerated-type-values-in-generated-code.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ode23.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ode45.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/odeget.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/odeset.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt_7raz-1

Code generation for additional MATLAB functions
Data and File Management in MATLAB

• feof
• frewind

See Data and File Management in MATLAB.

Linear Algebra in MATLAB

• ishermitian
• issymmetric

See Linear Algebra in MATLAB.

String Functions in MATLAB

str2double

See String Functions in MATLAB.

Code generation for additional MATLAB function options
• 'vector' and 'matrix' eigenvalue options for eig
• All output class options for sum and prod
• All output class options for mean except 'native' for integer types
• Multidimensional array support for flipud, fliplr, and rot90
• Dimension to operate along option for circshift

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical List.

Collapsed list for inherited properties in code generation report
The code generation report displays inherited object properties on the Variables tab. In R2014b, the
list of inherited properties is collapsed by default.

Change in length of exported identifiers
In previous releases, the code generation software limited exported identifiers, such as entry-point
function names or emxArray utility function names, to a maximum length defined by the maximum
identifier length setting. If the truncation of identifiers resulted in different functions having identical
names, the code generation failed. In R2014b, for exported identifiers, the code generation software
uses the entire generated identifier, even if its length exceeds the maximum identifier length setting.
If, however, the target C compiler has a maximum identifier length that is less than the length of the
generated identifier, the target C compiler truncates the identifier.

Compatibility Considerations
Unless the target C compiler has a maximum identifier length that equals the length of a truncated
exported identifier from a previous release, the identifier from the previous release does not match

 Check bug reports for issues and fixes

19-5

https://www.mathworks.com/help/releases/R2014b/matlab/ref/feof.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/frewind.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2014b/matlab/ref/ishermitian.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/issymmetric.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
https://www.mathworks.com/help/releases/R2014b/matlab/ref/str2double.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
https://www.mathworks.com/help/releases/R2014b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

the identifier that R2014b generates. For example, suppose the maximum identifier length setting has
the default value 31 and the target C compiler has a maximum identifier length of 255. Suppose that
in R2014b, the code generation software generates the function
emxCreateWrapperND_StructType_123 for an unbounded variable-size structure array named
StructType_123. In previous releases, the same function had the truncated name
emxCreateWrapperND_StructType_1. In this example, code that previously called
emxCreateWrapperND_StructType_1 must now call emxCreateWrapperND_StructType_123.

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation
In R2014b, you can select an Intel Performance Primitive (IPP) code replacement library for a specific
platform. You can generate code for a platform that is different from the host platform that you use
for code generation. The new code replacement libraries are:

• Intel IPP for x86-64 (Windows)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)
• Intel IPP for x86/Pentium (Windows)
• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)
• Intel IPP for x86-64 (Linux)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

In a MATLAB Coder project that you create in R2014b, you can no longer select these libraries:

• Intel IPP
• Intel IPP/SSE with GNU99 extensions

If, however, you open a project from a previous release that specifies Intel IPP or Intel IPP/SSE with
GNU99 extensions, the library selection is preserved and that library appears in the selection list.

See Choose a Code Replacement Library.

Fixed-point conversion enhancements
Conversion from project to MATLAB scripts for command-line fixed-point conversion and
code generation

For a MATLAB Coder project that includes automated fixed-point conversion, you can use the -
tocode option of the coder command to create a pair of scripts for fixed-point conversion and fixed-
point code generation. You can use the scripts to repeat the project workflow in a command-line
workflow. Before you convert the project to the scripts, you must complete the Test Numerics step of
the fixed-point conversion process.

For example:

coder -tocode my_fixpt_proj -script myscript.m

This command generates two scripts:

• myscript.m contains the MATLAB commands to create a code configuration object and generate
fixed-point C code from fixed-point MATLAB code. The code configuration object has the same
settings as the project.

R2014b

19-6

https://www.mathworks.com/help/releases/R2014b/coder/ug/choose-a-code-replacement-library-mc.html

• myscriptsuffix.m contains the MATLAB commands to create a floating-point to fixed-point
configuration object and generate fixed-point MATLAB code from the entry-point function. The
floating-point to fixed-point configuration object has the same fixed-point conversion settings as
the project. suffix is the generated fixed-point file name suffix specified by the project file.

If you do not specify the -script option, coder writes the scripts to the Command Window.

See Convert Fixed-Point Conversion Project to MATLAB Scripts.

Lookup table approximations for unsupported functions

The Fixed-Point Conversion tool now provides an option to generate lookup table approximations for
continuous and stateless functions in your original MATLAB code. This capability is useful for
handling functions that are not supported for fixed point. To replace a function with a generated
lookup table, specify the function that you want to replace on the Function Replacements tab.

In the command-line workflow, use coder.approximation and the coder.FixptConfig
configuration object addApproximation method.

See Replacing Functions Using Lookup Table Approximations.

Enhanced plotting capabilities

The Fixed-Point Conversion tool now provides additional plotting capabilities. You can use these
plotting capabilities during the testing phase to compare the generated fixed-point versions of your
algorithms to the original floating-point versions.

Default plots

The default comparison plots now plot vector and matrix data in addition to scalar data.

Custom plotting functions

You can now specify your own custom plotting function. The Fixed-Point Conversion tool calls the
function and, for each variable, passes in the name of the variable and the function that uses it, and
the results of the floating-point and fixed-point simulations. Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and then set
Custom plot function to the name of your plot function.

In the command-line workflow, set the coder.FixptConfig configuration object PlotFunction
property to the name of your plot function.

See Custom Plot Functions.

 Check bug reports for issues and fixes

19-7

https://www.mathworks.com/help/releases/R2014b/coder/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/replacing-function-using-lookup-table-approximations.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/custom-plot-functions.html

Integration with Simulation Data Inspector

You can now use the Simulation Data Inspector for comparison plots. The Simulation Data Inspector
provides the capability to inspect and compare logged simulation data for multiple runs. You can
import and export logged data, customize the organization of your logged data, and create reports.

In the Fixed-Point Conversion tool, select Advanced and then set Plot with Simulation Data
Inspector to Yes. See Enable Plotting Using the Simulation Data Inspector.

When generating fixed-point code in the command-line workflow, set the coder.FixptConfig
configuration object PlotWithSimulationDataInspector property to true.

Custom plotting functions take precedence over the Simulation Data Inspector. See Enable Plotting
Using the Simulation Data Inspector.

Automated fixed-point conversion for commonly used System objects in MATLAB including
Biquad Filter, FIR Filter, and Rate converter

You can now convert the following DSP System Toolbox System objects to fixed point using the Fixed-
Point Conversion tool.

• dsp.BiquadFilter
• dsp.FIRFilter, Direct Form only
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.UpperTriangularSolver
• dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation range data.
During the conversion process, you can view simulation minimum and maximum values and proposed
data types for these System objects. You can also view Whole Number information and histogram
data. You cannot propose data types for these System objects based on static range data.

Additional fixed-point conversion command-line options

You can now use the codegen function with the -float2fixed option to convert floating point to
fixed point based on derived ranges as well as simulation ranges. For more information, see
coder.FixptConfig.

Type proposal report

After running the Test Numerics step to verify the data type proposals, the tool provides a link to a
type proposal report that shows the instrumentation results for the fixed-point simulation. This report
includes:

• The fixed-point code generated for each function in your original MATLAB algorithm
• Fixed-point instrumentation results for each variable in these functions:

• Simulation minimum value
• Simulation maximum value
• Proposed data type

R2014b

19-8

https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2cqq.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2dqs.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/enable-plotting-using-the-simulation-data-inspector_bui2dqs.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html
https://www.mathworks.com/help/releases/R2014b/coder/ref/coder.fixptconfig-class.html

Generated fixed-point code enhancements

The generated fixed-point code now:

• Avoids loss of range or precision in unsigned subtraction operations. When the result of the
subtraction is negative, the conversion process promotes the left operand to a signed type.

• Handles multiplication of fixed-point variables by non fixed-point variables. In previous releases,
the variable that did not have a fixed-point type had to be a constant.

• Avoids overflows when adding and subtracting non fixed-point variables and fixed-point variables.
• Avoids loss of range when concatenating arrays of fixed-point numbers using vertcat and

horzcat.

If you concatenate matrices, the conversion tool uses the largest numerictype among the
expressions of a row and casts the leftmost element to that type. This type is then used for the
concatenated matrix to avoid loss of range.

• If the function that you are converting has a scalar input, and the mpower exponent input is not
constant, the conversion tool sets fimath ProductMode to SpecifyPrecision in the generated
code. With this setting , the output data type can be determined at compile time.

• Supports the following functions:

• true(m,n)
• false(m,n)
• sub2ind
• mode
• rem

• Uses enhanced division replacement.

For more information, see Generated Fixed-Point Code.

The tool now numbers function specializations sequentially in the Function list. In the generated
fixed-point code, the number of each fixed-point specialization matches the number in the Function
list which makes it easy to trace between the floating-point and fixed-point versions of your code. For
example, the generated fixed-point function for the specialization of function foo named foo > 1 is
named foo_s1. For more information, see Specializations.

Highlighting of potential data type issues in generated HTML report

You now have the option to highlight potential data type issues in the generated HTML report. The
report highlights MATLAB code that requires single-precision, double-precision, or expensive fixed-
point operations. The expensive fixed-point operations check identifies optimization opportunities for
fixed-point code. It highlights expressions in the MATLAB code that require cumbersome
multiplication or division, or expensive rounding. The following example report highlights MATLAB
code that requires expensive fixed-point operations.

 Check bug reports for issues and fixes

19-9

https://www.mathworks.com/help/releases/R2014b/coder/ug/generated-fixed-point-code.html
https://www.mathworks.com/help/releases/R2014b/coder/ug/fixed-point-conversion.html#bujt2u_-1

The checks for the data type issues are disabled by default.

To enable the checks in a project:

1 In the Fixed-Point Conversion Tool, click Advanced to view the advanced settings.
2 Set Highlight potential data type issues to Yes.

To enable the checks at the command-line interface:

1 Create a floating-point to fixed-point conversion configuration object:

fxptcfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property to true:

fxptcfg.HighlightPotentialDataTypeIssues = true;

See Data Type Issues in Generated Code.

R2014b

19-10

https://www.mathworks.com/help/releases/R2014b/coder/ug/data-type-issues-in-generated-code.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

19-11

https://www.mathworks.com/support/bugreports/

R2014a

Version: 2.6

New Features

Bug Fixes

Compatibility Considerations

20

Code generation for additional Image Processing Toolbox and
Computer Vision System Toolbox functions
Image Processing Toolbox

affine2d im2uint16 imhist
bwpack im2uint8 imopen
bwselect imbothat imref2d
bwunpack imclose imref3d
edge imdilate imtophat
getrangefromclass imerode imwarp
im2double imextendedmax mean2
im2int16 imextendedmin projective2d
im2single imfilter strel

See Image Processing Toolbox.

Computer Vision System Toolbox

• detectHarrisFeatures
• detectMinEigenFeatures
• estimateGeometricTransform

See Computer Vision System Toolbox.

Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox functions
and System objects
Signal Processing Toolbox

• findpeaks
• db2pow
• pow2db

See Signal Processing Toolbox.

Communications System Toolbox

• comm.OFDMModulator
• comm.OFDMDemodulator

See Communications System Toolbox.

DSP System Toolbox

ca2tf firhalfband ifir iirnotch

R2014a

20-2

https://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
https://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
https://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
https://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectharrisfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectmineigenfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/estimategeometrictransform.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
https://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-28
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html

cl2tf firlpnorm iircomb iirpeak
firceqrip firminphase iirgrpdelay tf2ca
fireqint firnyquist iirlpnorm tf2cl
firgr firpr2chfb iirlpnormc dsp.DCBlocker

See DSP System Toolbox.

Code generation for fminsearch optimization function and additional
interpolation functions in MATLAB
Optimization Functions in MATLAB

• fminsearch
• optimget
• optimset

See Optimization Functions in MATLAB.

Interpolation and Computational Geometry in MATLAB

• interp3
• mkpp
• pchip
• ppval
• spline
• unmkpp
• 'spline' and 'v5cubic' interpolation methods for interp1
• 'spline' and 'cubic' interpolation methods for interp2

See Interpolation and Computational Geometry in MATLAB.

Conversion from project to MATLAB script for command-line code
generation
Using the -tocode option of the coder command, you can convert a MATLAB Coder project to the
equivalent MATLAB code in a MATLAB script. The script reproduces the project in a configuration
object and runs the codegen command. With this capability, you can:

• Move from a project workflow to a command-line workflow.
• Save the project as a text file that you can share.

The following command converts the project named myproject to the script named myscript.m:

coder -tocode myproject -script myscript.m

If you omit the -script option, the coder command writes the script to the Command Window.

See Convert MATLAB Coder Project to MATLAB Script.

 Check bug reports for issues and fixes

20-3

https://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
https://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt891f3
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp1.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-22
https://www.mathworks.com/help/releases/R2014a/coder/ug/generate-a-matlab-script-to-build-a-project.html

Code generation for fread function
In R2014a, you can generate code for the fread function.

See Data and File Management in MATLAB.

Automatic C/C++ compiler setup
Previously, you used mex -setup to set up a compiler for C/C++ code generation. In R2014a, the
code generation software locates and uses a supported installed compiler. You can use mex -setup
to change the default compiler. See Changing Default Compiler.

Compile-time declaration of constant global variables
You can specify that a global variable is a compile-time constant. Use a constant global variable to:

• Generate optimized code.
• Define the value of a constant without changing source code.

To declare a constant global variable in a MATLAB Coder project:

1 On the Overview tab, click Add global. Enter a name for the global variable.
2 Click the field to the right of the global variable name.
3 Select Define Constant Value.
4 Enter the value in the field to the right of the global variable name.

To declare a constant global variable at the command-line interface, use the -globals option along
with the coder.Constant function.

In the following code, gConstant is a global variable with constant value 42.

cfg = coder.config('mex');
globals = {'gConstant', coder.Constant(42)};
codegen -config cfg myfunction -globals globals

See Define Constant Global Data.

Enhanced code generation support for switch statements
Code generation now supports:

• Switch expressions and case expressions that are noninteger numbers, nonconstant strings,
variable-size strings, or empty matrices

• Case expressions with mixed types and sizes

If all case expressions are scalar integer values, the code generation software generates a C switch
statement. If at run time, the switch value is not an integer, the code generation software generates
an error.

When the case expressions contain noninteger or nonscalar values, the code generation software
generates C if statements in place of a C switch statement.

R2014a

20-4

https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/code-generation-for-global-data.html#bt_jyq9-1

Code generation support for value classes with set.prop methods
In R2014a, you can generate code for value classes that have set.prop methods.

Code generation error for property that uses AbortSet attribute
Previously, when the current and new property values were equal, the generated code set the
property value and called the set property method regardless of the value of the AbortSet attribute.
When the AbortSet attribute was true, the generated code behavior differed from the MATLAB
behavior.

In R2014a, if your code has properties that use the AbortSet attribute, the code generation software
generates an error.

Compatibility Considerations
Previously, for code using the AbortSet attribute, code generation succeeded, but the behavior of
the generated code was incorrect. Now, for the same code, code generation ends with an error.
Remove the AbortSet attribute from your code and rewrite the code to explicitly compare the
current and new property value.

Independent configuration selections for standard math and code
replacement libraries
In R2014a, you can independently select and configure standard math and code replacement libraries
for C and C++ code generation.

• The language selection (C or C++) determines the available standard math libraries.

• In a project, the Language setting on the All Settings tab determines options that are
available for a new Standard math library setting on the Hardware tab.

• In a code configuration object, the TargetLang parameter determines options that are
available for a new TargetLangStandard parameter.

• Depending on the your language selection, the following options are available for the Standard
math library setting in a project and for the TargetLangStandard parameter in a configuration
object.

Language Standard Math Libraries (TargetLangStandard)
C C89/C90 (ANSI) – default

C99 (ISO)
C++ C89/C90 (ANSI) – default

C99 (ISO)

C++03 (ISO)

• The language selection and the standard math library selection determine the available code
replacement libraries.

 Check bug reports for issues and fixes

20-5

• In a project, the Code replacement library setting on the Hardware tab lists available code
replacement libraries. The MATLAB Coder software filters the list based on compatibility with
the Language and Standard math library settings and the product licensing. For example,
Embedded Coder offers more libraries and the ability to create and use custom code
replacement libraries.

• In a configuration object, the valid values for the CodeReplacementLibrary parameter
depend on the values of the TargetLang and TargetLangStandard parameters and the
product licensing.

Compatibility Considerations
In R2014a, code replacement libraries provided by MathWorks no longer include standard math
libraries.

• When you open a project that was saved with an earlier version:

• The Code replacement library setting remains the same unless previously set to C89/C90
(ANSI), C99 (ISO), C++ (ISO), Intel IPP (ANSI), or Intel IPP (ISO). In these
cases, MATLAB Coder software sets Code replacement library to None or Intel IPP.

• MATLAB Coder software sets the new Standard math library setting to a value based on the
previous Code replacement library setting.

If Code replacement library was set to: Standard Math Library is set to:
C89/C90 (ANSI), C99 (ISO), or C++
(ISO)

C89/C90 (ANSI), C99 (ISO), C++03
(ISO), respectively

GNU99 (GNU), Intel IPP (ISO),Intel
IPP (GNU), ADI TigerSHARC (Embedded
Coder only), or MULTI BF53x (Embedded
Coder only)

C99 (ISO)

A custom library (Embedded Coder), and
the corresponding registration file has
been loaded in memory

A value based on the BaseTfl property
setting

Any other value The default standard math library,
C89/C90 (ANSI)

• When you load a configuration object from a MAT file that was saved in an earlier version:

• The CodeReplacementLibrary setting remains the same unless previously set to Intel IPP
(ANSI) or Intel IPP (ISO). In these cases, MATLAB Coder software sets
CodeReplacementLibrary to Intel IPP.

• MATLAB Coder software sets the new TargetLangStandard setting to a value based on the
previous CodeReplacementLibrary setting.

If CodeReplacementLibrary was set to: TargetLangStandard is set to:
Intel IPP (ANSI) C89/C90 ANSI
Intel IPP (ISO) C99 (ISO)
Any other value The default standard math library,

C89/C90 (ANSI)

R2014a

20-6

• The generated code can differ from earlier versions if you use the default standard math
library, C89/C90 (ANSI), with one of these code replacement libraries:

GNU99 (GNU)
Intel IPP (GNU)
ADI TigerSHARC (Embedded Coder only)
MULTI BF53x (Embedded Coder only)

To generate the same code as in earlier versions, change TargetLangStandard to C99
(ISO).

• After you open a project, if you select a code replacement library provided by MathWorks, the
code generation software can produce different code than in previous versions, depending on the
Standard math library setting. Verify generated code.

• If a script that you used in a previous version sets the configuration object
CodeReplacementLibrary parameter, modify the script to use both the
CodeReplacementLibrary and the TargetLangStandard parameters.

Restrictions on bit length for integer types in a
coder.HardwareImplementation object
In R2014a, the code generation software imposes restrictions on the bit length of integer types in a
coder.HardwareImplementation object. For example, the value of ProdBitPerChar must be
between 8 and 32 and less than or equal to ProdBitPerShort. If you set the bit length to an invalid
value, the code generation software reports an error.

See coder.HardwareImplementation.

Change in location of interface files in code generation report
The code generation software creates and uses interface files prefixed with _coder. For MEX code
generation, these files appear in the code generation report. Previously, these files appeared in the
Target Source Files pane of the C code tab of the code generation report. They now appear in the
Interface Source Files pane of the C code tab. The report is now consistent with the folder
structure for generated files. Since R2013b, the interface files are in a subfolder named interface.

Compiler warnings in code generation report
For MEX code generation, the code generation report now includes C and C++ compiler warning
messages. If the code generation software detects compiler warnings, it generates a warning
message in the All Messages tab. Compiler error and warning messages are highlighted in red on
the Target Build Log tab.

See View Errors and Warnings in a Report.

Removal of date and time comment from generated code files
Previously, generated code files contained a comment with the string C source code generated
on followed by a date and time stamp. This comment no longer appears in the generated code files. If
you have an Embedded Coder license, you can include the date and time stamp in custom file banners
by using code generation template (CGT) files.

 Check bug reports for issues and fixes

20-7

https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.hardwareimplementation-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/code-generation-reports.html#br19yw3-9

Removal of two's complement guard from rtwtypes.h
rtwtypes.h no longer contains the following code:
#if ((SCHAR_MIN + 1) != -SCHAR_MAX)
#error "This code must be compiled using a 2's complement representation for signed integer values"
#endif

You must compile the code that is generated by the MATLAB Coder software on a target that uses a
two’s complement representation for signed integer values. The generated code does not verify that
the target uses a two’s complement representation for signed integer values.

Removal of TRUE and FALSE from rtwtypes.h
When the target language is C, rtwtypes.h defines true and false. It no longer defines TRUE and
FALSE.

Compatibility Considerations
If you integrate code generated in R2014a with custom code that references TRUE or FALSE, modify
your custom code in one of these ways:

• Define TRUE or FALSE in your custom code.
• Change TRUE and FALSE to true and false, respectively.
• Change TRUE and FALSE to 1U and 0U, respectively.

Change to default names for structure types generated from entry-
point function inputs and outputs
In previous releases, the code generation software used the same default naming convention for
structure types generated from local variables and from entry-point function inputs and outputs. The
software used struct_T for the first generated structure type name, a_struct_T for the next name,
b_struct_T for the next name, and so on.

In R2014a, the code generation software uses a different default naming convention for structure
types generated from entry-point function inputs and outputs. The software uses struct0_T for the
first generated structure type name, struct1_T for the next name, struct2_T for the next name,
and so on. With this new naming convention, you can more easily predict the structure type name in
the generated code.

Compatibility Considerations
If you have C or C++ code that uses default structure type names generated from an entry-point
function in a previous release, and you generate the entry-point function in R2014a, you must rewrite
the code to use the new structure type names. However, subsequent changes to your MATLAB code,
such as adding a variable with a structure type, can change the default structure type names in the
generated code. To avoid compatibility issues caused by changes to default names for structure types
in generated code, specify structure type names using coder.cstructname.

R2014a

20-8

https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.cstructname.html

Toolbox functions supported for code generation
See Functions and Objects Supported for C and C++ Code Generation — Alphabetical List and
Functions and Objects Supported for C and C++ Code Generation — Categorical List.

Communications System Toolbox

• comm.OFDMModulator
• comm.OFDMDemodulator

Computer Vision System Toolbox

• detectHarrisFeatures
• detectMinEigenFeatures
• estimateGeometricTransform

Data and File Management in MATLAB

fread

DSP System Toolbox

ca2tf firhalfband ifir iirnotch
cl2tf firlpnorm iircomb iirpeak
firceqrip firminphase iirgrpdelay tf2ca
fireqint firnyquist iirlpnorm tf2cl
firgr firpr2chfb iirlpnormc dsp.DCBlocker

Image Processing Toolbox

affine2d im2uint16 imhist
bwpack im2uint8 imopen
bwselect imbothat imref2d
bwunpack imclose imref3d
edge imdilate imtophat
getrangefromclass imerode imwarp
im2double imextendedmax mean2
im2int16 imextendedmin projective2d
im2single imfilter strel

Interpolation and Computational Geometry in MATLAB

• interp2
• interp3
• mkpp
• pchip
• ppval

 Check bug reports for issues and fixes

20-9

https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/functions-supported-for-code-generation--categorical-list.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
https://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectharrisfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/detectmineigenfeatures.html
https://www.mathworks.com/help/releases/R2014a/vision/ref/estimategeometrictransform.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/fread.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
https://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
https://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
https://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
https://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
https://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
https://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html

• polyarea
• rectint
• spline
• unmkpp

Matrices and Arrays in MATLAB

flip

Optimization Functions in MATLAB

• fminsearch
• optimget
• optimset

Polynomials in MATLAB

• polyder
• polyint
• polyvalm

Signal Processing Toolbox

• findpeaks
• db2pow
• pow2db

Fixed-point conversion enhancements
These capabilities require a Fixed-Point Designer license.

Overflow detection with scaled double data types in MATLAB Coder projects

The MATLAB Coder Fixed-Point Conversion tool now provides the capability to detect overflows. At
the numerical testing stage in the conversion process, the tool simulates the fixed-point code using
scaled doubles. It then reports which expressions in the generated code produce values that would
overflow the fixed-point data type. For more information, see Detect Overflows Using the Fixed-Point
Conversion Tool and Detecting Overflows.

You can also detect overflows when using the codegen function. For more information, see
coder.FixptConfig and Detect Overflows at the Command Line.

Support for MATLAB classes

You can now use the MATLAB Coder Fixed-Point Conversion tool to convert floating-point MATLAB
code that uses MATLAB classes. For more information, see Fixed-Point Code for MATLAB Classes.

Generated fixed-point code enhancements

The generated fixed-point code now:

R2014a

20-10

https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyarea.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/rectint.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/flip.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyder.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyint.html
https://www.mathworks.com/help/releases/R2014a/matlab/ref/polyvalm.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/fixed-point-conversion.html#bt9yuxb
https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/detect-overflows-at-the-command-line.html
https://www.mathworks.com/help/releases/R2014a/coder/ug/generating-fixed-point-code-for-matlab-classes.html

• Uses subscripted assignment (the colon(:) operator). This enhancement produces concise code
that is more readable.

• Has better code for constant expressions. In previous releases, multiple parts of an expression
were quantized to fixed point. The final value of the expression was less accurate and the code
was less readable. Now, constant expressions are quantized only once at the end of the evaluation.
This new behavior results in more accurate results and more readable code.

For more informations, see Generated Fixed-Point Code.

Fixed-point report for float-to-fixed conversion

In R2014a, when you convert floating-point MATLAB code to fixed-point C or C++ code, the code
generation software generates a fixed-point report in HTML format. For the variables in your
MATLAB code, the report provides the proposed fixed-point types and the simulation or derived
ranges used to propose those types. For a function my_fcn and code generation output folder
out_folder, the location of the report is out_folder/my_fcn/fixpt/
my_fcn_fixpt_Report.html. If you do not specify out_folder in the project settings or as an
option of the codegen command, the default output folder is codegen.

 Check bug reports for issues and fixes

20-11

https://www.mathworks.com/help/releases/R2014a/coder/ug/generated-fixed-point-code.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2014a

20-12

https://www.mathworks.com/support/bugreports/

R2013b

Version: 2.5

New Features

Bug Fixes

Compatibility Considerations

21

Code generation for Statistics Toolbox and Phased Array System
Toolbox
Code generation now supports more than 100 Statistics Toolbox™ functions. For implementation
details, see Statistics Toolbox Functions.

Code generation now supports most of the Phased Array System Toolbox™ functions and System
objects. For implementation details, see Phased Array System Toolbox Functions and Phased Array
System Toolbox System Objects.

Toolbox functions supported for code generation
For implementation details, see Functions Supported for C/C++ Code Generation — Alphabetical
List.

Data Type Functions

• narginchk

Programming Utilities

• mfilename

Specialized Math

• psi

Computer Vision System Toolbox Classes and Functions

• extractFeatures
• detectSURFFeatures
• disparity
• detectMSERFeatures
• detectFASTFeatures
• vision.CascadeObjectDetector
• vision.PointTracker
• vision.PeopleDetector
• cornerPoints
• MSERRegions
• SURFPoints

parfor function for standalone code generation, enabling execution on
multiple cores
You can use MATLAB Coder software to generate standalone C/C++ code from MATLAB code that
contains parfor-loops. The code generation software uses the Open Multi-Processing (OpenMP)
application interface to generate C/C++ code that runs in parallel on multiple cores on the target
hardware.

R2013b

21-2

https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
https://www.mathworks.com/help/releases/R2013b/coder/ug/system-objects-supported-for-code-generation.html#bt1pn_u
https://www.mathworks.com/help/releases/R2013b/coder/ug/system-objects-supported-for-code-generation.html#bt1pn_u
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/narginchk.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/mfilename.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/psi.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/extractfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectsurffeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/disparity.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectmserfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/detectfastfeatures.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.cascadeobjectdetectorclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.pointtrackerclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/vision.peopledetectorclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/cornerpointsclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/mserregionsclass.html
https://www.mathworks.com/help/releases/R2013b/vision/ref/surfpointsclass.html

For more information, see parfor and Accelerate MATLAB Algorithms That Use Parallel for-loops
(parfor).

Persistent variables in parfor-loops
You can now generate code from parallel algorithms that use persistent variables.

For more information, see parfor.

Random number generator functions in parfor-loops
You can now generate code from parallel algorithms that use the random number generators rand,
randn, randi, randperm, and rng.

For more information, see parfor.

External code integration using coder.ExternalDependency
You can define the interface to external code using the new coder.ExternalDependency class.
Methods of this class update the compile and build information required to integrate the external
code with MATLAB code. In your MATLAB code, you can call the external code without needing to
update build information. See coder.ExternalDependency.

Updating build information using coder.updateBuildInfo
You can use the new function coder.updateBuildInfo to update build information. For example:

coder.updateBuildInfo('addLinkFlags','/STACK:1000000');

adds a stack size option to the linker command line. See coder.updateBuildInfo.

Generation of simplified code using built-in C types
By default, MATLAB Coder now uses built-in C types in the generated code. You have the option to
use predefined types from rtwtypes.h. To control the data type in the generated code:

• In a project, on the Project Settings dialog box Code Appearance tab, use the Data Type
Replacement setting.

• At the command line, use the configuration object parameter DataTypeReplacement.

The built-in C type that the code generation software uses depends on the target hardware.

For more information, see Specify Data Type Used in Generated Code.

Compatibility Considerations
If you use the default configuration or project settings, the generated code has built-in C types such
as double or char. Code generated prior to R2013b has predefined types from rtwtypes.h, such as
real_T or int32_T.

 Check bug reports for issues and fixes

21-3

https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/accelerate-matlab-algorithms-that-use-parfor-loops.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/accelerate-matlab-algorithms-that-use-parfor-loops.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/rand.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randn.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randi.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/randperm.html
https://www.mathworks.com/help/releases/R2013b/matlab/ref/rng.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.externaldependencyclass.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.updatebuildinfo.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/build-setting-configuration.html#btybyd5

Conversion of MATLAB expressions into C constants using coder.const
You can use the new function coder.const to convert expressions and function calls to constants at
compile time. See coder.const and Constant Folding.

Highlighting of constant function arguments in the compilation report
The compilation report now highlights constant function arguments and displays them in a distinct
color. You can display the constant argument data type and value by placing the cursor over the
highlighted argument. You can export the constant argument value to the base workspace where you
can display detailed information about the argument.

For more information, see Viewing Variables in Your MATLAB Code.

Code Generation Support for int64, uint64 data types
You can now use int64 and uint64 data types for code generation.

C99 long long integer data type for code generation
If your target hardware and compiler support the C99 long long integer data type, you can use this
data type for code generation. Using long long results in more efficient generated code that contains
fewer cumbersome operations and multiword helper functions. To specify the long long data type for
code generation:

• In a project, on the Project Settings dialog box Hardware tab, use the following production and
test hardware settings:

• Enable long long: Specify that your C compiler supports the long long data type. Set to Yes
to enable Sizes: long long.

• Sizes: long long: Describe length in bits of the C long long data type supported by the
hardware.

• At the command line, use the following hardware implementation configuration object parameters:

• ProdLongLongMode: Specify that your C compiler supports the long long data type. Set to
true to enable ProdBitPerLongLong.

• ProdBitPerLongLong: Describes the length in bits of the C long long data type supported by
the production hardware.

• TargetLongLongMode: Specifies whether your C compiler supports the long long data type.
Set to true to enable TargetBitPerLongLong.

• TargetBitPerLongLong: Describes the length in bits of the C long long data type supported
by the test hardware.

For more information, see the class reference information for
coder.HardwareImplementation.

R2013b

21-4

https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.const.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/matlab-coder-optimizations-in-generated-cc-code.html#bt1h79s
https://www.mathworks.com/help/releases/R2013b/coder/ug/code-generation-reports.html#br190a7-12
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html

Change to passing structures by reference
In R2013b, the option to pass structures by reference to entry-point functions in the generated code
applies to function outputs and function inputs. In R2013a, this option applied only to inputs to entry-
point functions.

Compatibility Considerations
If you select the pass structures by reference option, and a MATLAB entry-point function has a single
output that is a structure, the generated C function signature in R2013b differs from the signature in
R2013a. In R2013a, the generated C function returns the output structure. In R2013b, the output
structure is a pass by reference function parameter.

If you have code that calls one of these functions generated in R2013a, and then you generate the
function in R2013b, you must change the call to the function. For example, suppose S is a structure in
the following MATLAB function foo.

function S = foo()

If you generate this function in R2013a, you call the function this way:

S = foo();

If you generate this function in R2013b, you call the function this way:

foo(&S);

coder.runTest new syntax
Use the syntax coder.runTest(test_fcn, MEX_name_ext) to run test_fcn replacing calls to
entry-point functions with calls to the corresponding MEX functions in the MEX file named
MEX_name_ext. MEX_name_ext includes the platform-specific file extension. See coder.runTest.

coder.target syntax change
The new syntax for coder.target is:

tf = coder.target('target')

For example, coder.target('MATLAB') returns true when code is running in MATLAB. See
coder.target.

You can use the old syntax, but consider changing to the new syntax. The old syntax will be removed
in a future release.

Changes for complex values with imaginary part equal to zero
In R2013b, complex values with an imaginary part equal to zero become real when:

• They are returned by a MEX function.
• They are passed to an extrinsic function.

See Expressions With Complex Operands Yield Complex Results.

 Check bug reports for issues and fixes

21-5

https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.runtest.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.target.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/code-generation-for-complex-data.html#bsvpcr_

Compatibility Considerations
MEX functions generated in R2013b return a real value when a complex result has an imaginary part
equal to zero. MEX functions generated prior to R2013b return a complex value when a complex
result has an imaginary part equal to zero.

In R2013b, complex values with imaginary part equal to zero become real when passed to an
extrinsic function. In previous releases, they remain complex.

Subfolder for code generation interface files
Previously, interface files for MEX code generation appeared in the code generation output folder. In
R2013b, these interface files have the prefix _coder, appear in a subfolder named interface, and
appear for all code generation output types.

Support for LCC compiler on Windows 64-bit machines
The LCC-win64 compiler is shipping with MATLAB Coder for Microsoft Windows 64-bit machines. For
Windows 64-bit machines that do not have a third-party compiler installed, MEX code generation uses
LCC by default.

You cannot use LCC for code generation of C/C++ static libraries, C/C++ dynamic libraries, or C/C+
+ executables. For these output types, you must install a compiler. See https://
www.mathworks.com/support/compilers/current_release/.

Fixed-Point conversion enhancements
These capabilities require a Fixed-Point Designer license.

Fixed-Point conversion option for codegen

You can now convert floating-point MATLAB code to fixed-point code, and then generate C/C++ code
at the command line using the option -float2fixed with the codegen command. See codegen and
Convert Floating-Point MATLAB Code to Fixed-Point C Code Using codegen.

Fixed-point conversion using derived ranges on Mac platforms

You can now convert floating-point MATLAB code to fixed-point C code using the Fixed-Point
Conversion tool in MATLAB Coder projects on Mac platforms.

For more information, see Automated Fixed-Point Conversion and Propose Fixed-Point Data Types
Based on Derived Ranges.

Derived ranges for complex variables in MATLAB Coder projects

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can derive ranges for complex
variables. For more information, see Propose Fixed-Point Data Types Based on Derived Ranges

Fixed-point conversion workflow supports designs that use enumerated types

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data types for
enumerated data types using derived and simulation ranges.

R2013b

21-6

https://www.mathworks.com/help/releases/R2013b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/convert-floating-point-matlab-code-to-fixed-point-code-using-codegen.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html

For more information, see Propose Fixed-Point Data Types Based on Derived Ranges and Propose
Fixed-Point Data Types Based on Simulation Ranges.

Fixed-point conversion of variable-size data using simulation ranges

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data types for
variable-size data using simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges.

Fixed-point conversion test file coverage results

The Fixed-Point Conversion tool now provides test file coverage results. After simulating your design
using a test file, the tool provides an indication of how often the code is executed. If you run multiple
test files at once, the tool provides the cumulative coverage. This information helps you determine the
completeness of your test files and verify that they are exercising the full operating range of your
algorithm. The completeness of the test file directly affects the quality of the proposed fixed-point
types.

For more information, see Code Coverage.

 Check bug reports for issues and fixes

21-7

https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/fixed-point-conversion.html#bt1s0y3

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2013b

21-8

https://www.mathworks.com/support/bugreports/

R2013a

Version: 2.4

New Features

Bug Fixes

Compatibility Considerations

22

Automatic fixed-point conversion during code generation (with Fixed-
Point Designer)
You can now convert floating-point MATLAB code to fixed-point C code using the fixed-point
conversion capability in MATLAB Coder projects. You can choose to propose data types based on
simulation range data, static range data, or both.

Note You must have a Fixed-Point Designer license.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits used by each variable.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges and Propose
Fixed-Point Data Types Based on Derived Ranges.

File I/O function support
The following file I/O functions are now supported for code generation:

• fclose
• fopen
• fprintf

To view implementation details, see Functions Supported for Code Generation — Alphabetical List.

Support for nonpersistent handle objects
You can now generate code for local variables that contain references to handle objects or System
objects. In previous releases, generating code for these objects was limited to objects assigned to
persistent variables.

Structures passed by reference to entry-point functions
You can now specify to pass structures by reference to entry-point functions in the generated code.
This optimization is available for standalone code generation only; it is not available for MEX
functions. Passing structures by reference reduces the number of copies at entry-point function
boundaries in your generated code. It does not affect how structures are passed to functions other
than entry-point functions.

To pass structures by reference:

R2013a

22-2

https://www.mathworks.com/help/releases/R2013a/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

• In a project, on the Project Settings dialog box All Settings tab, under Advanced, set Pass
structures by reference to entry-point functions to Yes.

• At the command line, create a code generation configuration object and set the
PassStructByReference parameter to true. For example:

cfg = coder.config('lib');
cfg.PassStructByReference=true;

Include custom C header files from MATLAB code
The coder.cinclude function allows you to specify in your MATLAB code which custom C header
files to include in the generated C code. Each header file that you specify using coder.cinclude is
included in every C/C++ file generated from your MATLAB code. You can specify whether the
#include statement uses double quotes for application header files or angle brackets for system
header files in the generated code.

For example, the following code for function foo specifies to include the application header file
mystruct.h in the generated code using double quotes.

function y = foo(x1, x2)
%#codegen
coder.cinclude('mystruct.h');

...

For more information, see coder.cinclude.

Load from MAT-files
MATLAB Coder now supports a subset of the load function for loading run-time values from a MAT-
file while running a MEX function. It also provides a new function, coder.load, for loading compile-
time constants when generating MEX or standalone code. This support facilitates code generation
from MATLAB code that uses load to load constants into a function. You no longer have to manually
type in constants that were stored in a MAT-file.

To view implementation details for the load function, see Functions Supported for Code Generation
— Alphabetical List.

For more information, see coder.load.

coder.opaque function enhancements
When you use coder.opaque to declare a variable in the generated C code, you can now also specify
the header file that defines the type of the variable. Specifying the location of the header file helps to
avoid compilation errors because the MATLAB Coder software can find the type definition more
easily.

You can now compare coder.opaque variables of the same type. This capability helps you verify, for
example, whether an fopen command succeeded.

null = coder.opaque('FILE*','NULL','HeaderFile','stdio.h');
ftmp = null;
ftmp = coder.ceval('fopen',fname,permission);

 Check bug reports for issues and fixes

22-3

https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.cinclude.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.load.html

if ftmp == null
 % Error - file open failed
end

For more information, see coder.opaque.

Automatic regeneration of MEX functions in projects
When you run a test file from a MATLAB Coder project to verify the behavior of the generated MEX
function, the project now detects when to rebuild the MEX function. MATLAB Coder rebuilds the
MEX function only if you have modified the original MATLAB algorithm since the previous build,
saving you time during the verification phase.

MEX function signatures include constant inputs
When you generate a MEX function for a MATLAB function that takes constant inputs, by default, the
MEX function signature now contains the constant inputs. If you are verifying your MEX function in a
project, this behavior allows you to use the same test file to run the original MATLAB algorithm and
the MEX function.

Compatibility Considerations
In previous releases, MATLAB Coder removed the constants from the MEX function signature. To use
these existing scripts with MEX functions generated using R2013a software, do one of the following:

• Update the scripts so that they no longer remove the constants.
• Configure MATLAB Coder to remove the constant values from the MEX function signature.

To configure MATLAB Coder to remove the constant values:

• In a project, on the Project Settings dialog box All Settings tab, under Advanced, set Constant
Inputs to Remove from MEX signature.

• At the command line, create a code generation configuration object, and, set the
ConstantInputs parameter to 'Remove'. For example:

cfg = coder.config;
cfg.ConstantInputs='Remove';

Custom toolchain registration
MATLAB Coder software enables you to register third-party software build tools for creating
executables and libraries.

• The software automatically detects supported tool chains on your system.
• You can manage and customize multiple tool chain definitions.
• Before generating code, you can select any one of the definitions using a drop-down list.
• The software generates simplified makefiles for improved readability.

For more information:

• See Custom Toolchain Registration.

R2013a

22-4

https://www.mathworks.com/help/releases/R2013a/coder/ref/coder.opaque.html
https://www.mathworks.com/help/releases/R2013a/coder/custom-toolchain-registration.html

• See the Adding a Custom Toolchain example.

Compatibility Considerations
If you open a MATLAB Coder project or use a code generation configuration object from R2012b, the
current version of MATLAB Coder software automatically tries to use the toolchain approach. If an
existing project or configuration object does not use default target makefile settings, MATLAB Coder
might not be able to upgrade to use a toolchain approach and will emit a warning. For more
information, see Project or Configuration is Using the Template Makefile.

Complex trigonometric functions
Code generation support has been added for complex acosD, acotD, acscD, asecD, asinD, atanD,
cosD, cscD, cotD, secD, sinD, and tanD functions.

parfor function reduction improvements and C support
When generating MEX functions for parfor-loops, you can now use intersect and union as
reduction functions, and the following reductions are now supported:

• Concatenations
• Arrays
• Function handles

By default, when MATLAB Coder generates a MEX function for MATLAB code that contains a
parfor-loop, MATLAB Coder no longer requires C++ and now honors the target language setting.

Support for integers in number theory functions
Code generation supports integer inputs for the following number theory functions:

• cumprod
• cumsum
• factor
• factorial
• gcd
• isprime
• lcm
• median
• mode
• nchoosek
• nextpow2
• primes
• prod

To view implementation details, see Functions Supported for Code Generation — Alphabetical List.

 Check bug reports for issues and fixes

22-5

https://www.mathworks.com/help/releases/R2013a/coder/examples/adding-a-custom-toolchain.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/troubleshooting-fix-the-top-5-validation-issues.html#btwsf7b-1
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acosd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acotd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/acscd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/asecd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/asind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/atand.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cosd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cscd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cotd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/secd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/sind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/tand.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cumprod.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/factor.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/factorial.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/gcd.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isprime.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/lcm.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/mode.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/nchoosek.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/nextpow2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/primes.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/prod.html
https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

Enhanced support for class property initial values
If you initialize a class property, you can now assign a different type to the property when you use the
class. For example, class foo has a property prop1 of type double.

classdef foo %#codegen
 properties
 prop1= 0;
 end
 methods
 ...
 end
end

Function bar assigns a different type to prop1.

function bar %#codegen
 f=foo;
 f.prop1=single(0);
 ...

In R2013a, MATLAB Coder ignores the initial property definition and uses the reassigned type. In
previous releases, MATLAB Coder did not support this reassignment and code generation failed.

Compatibility Considerations
In previous releases, if the reassigned property had the same type as the initial value but a different
size, the property became variable-size in the generated code. In R2013a, MATLAB Coder uses the
size of the reassigned property, and the size is fixed. If you have existing MATLAB code that relies on
the property being variable-size, you cannot generate code for this code in R2013a. To fix this issue,
do not initialize the property in the property definition block.

For example, you can no longer generate code for the following function bar.

Class foo has a property prop1 which is a scalar double.

classdef foo %#codegen
 properties
 prop1= 0;
 end
 methods
 ...
 end
end

Function bar changes the size of prop1.

function bar %#codegen
 f=foo;
 f.prop1=[1 2 3];
 % Use f
 disp(f.prop1);
 f.prop1=[1 2 3 4 5 6];

R2013a

22-6

Optimized generated code for x=[x c] when x is a vector
MATLAB Coder now generates more optimized code for the expression x=[x c], if:

• x is a row or column vector.
• x is not in c.
• x is not aliased.
• There are no function calls in c.

In previous releases, the generated code contained multiple copies of x. In R2013a, it does not
contain multiple copies of x.

This enhancement reduces code size and execution time. It also improves code readability.

Default use of Basic Linear Algebra Subprograms (BLAS) libraries
MATLAB Coder now uses BLAS libraries whenever they are available. There is no longer an option to
turn off the use of these libraries.

Compatibility Considerations
If existing configuration settings disable BLAS, MATLAB Coder now ignores these settings.

Changes to compiler support
MATLAB Coder supports these new compilers.

• On Microsoft Windows platforms, Visual C++ 11.
• On Mac OS X platforms, Apple Xcode 4.2 with Clang.

MATLAB Coder no longer supports the gcc compiler on Mac OS X platforms.

MATLAB Coder no longer supports Watcom for standalone code generation. Watcom is still supported
for building MEX functions.

Compatibility Considerations
• Because Clang is the only compiler supported on Mac OS X platforms, and Clang does not support

Open MP, parfor is no longer supported on Mac OS X platforms.
• MATLAB Coder no longer supports Watcom for standalone code generation. Use Watcom only for

building MEX functions. Use an alternative compiler for standalone code generation. For a list of
supported compilers, see https://www.mathworks.com/support/compilers/
current_release/.

New toolbox functions supported for code generation
To view implementation details, see Functions Supported for Code Generation — Alphabetical List.

 Check bug reports for issues and fixes

22-7

https://www.mathworks.com/help/releases/R2013a/coder/ug/functions-supported-for-code-generation--alphabetical-list.html

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures
• insertMarker
• insertShape

Data File and Management Functions

• computer
• fclose
• fopen
• fprintf
• load

Image Processing Toolbox Functions

• conndef
• imcomplement
• imfill
• imhmax
• imhmin
• imreconstruct
• imregionalmax
• imregionalmin
• iptcheckconn
• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac
• ispc
• isunix

Functions being removed
These functions have been removed from MATLAB Coder software.

R2013a

22-8

https://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
https://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html

Function Name What Happens When You Use This
Function?

emlc Errors in R2013a.
emlmex Errors in R2013a.

Compatibility Considerations
emlc and emlmex have been removed. Use codegen instead. If you have existing code that calls
emlc or emlmex, use coder.upgrade to help convert your code to the new syntax.

 Check bug reports for issues and fixes

22-9

https://www.mathworks.com/help/releases/R2013a/coder/ref/codegen.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2013a

22-10

https://www.mathworks.com/support/bugreports/

R2012b

Version: 2.3

New Features

Bug Fixes

23

parfor function support for MEX code generation, enabling execution
on multiple cores
You can use MATLAB Coder software to generate MEX functions from MATLAB code that contains
parfor-loops. The generated MEX functions can run on multiple cores on a desktop. For more
information, see parfor and Acceleration of MATLAB Algorithms Using Parallel for-loops (parfor).

Code generation readiness tool
The code generation readiness tool screens MATLAB code for features and functions that are not
supported for code generation. The tool provides a report that lists the source files that contain
unsupported features and functions and an indication of how much work is needed to make the
MATLAB code suitable for code generation.

For more information, see coder.screener and Code Generation Readiness Tool.

Reduced data copies and lightweight run-time checks for generated
MEX functions
MATLAB Coder now eliminates data copies for built-in, non-complex data types. It also performs
faster bounds checks. These enhancements result in faster generated MEX functions.

Additional string function support for code generation
The following string functions are now supported for code generation. To view implementation
details, see Functions Supported for Code Generation — Alphabetical List.

• deblank
• hex2num
• isletter
• isspace
• isstrprop
• lower
• num2hex
• strcmpi
• strjust
• strncmp
• strncmpi
• strtok
• strtrim
• upper

Visualization functions in generated MEX functions
The MATLAB Coder software now detects calls to many common visualization functions, such as
plot, disp, and figure. For MEX code generation, MATLAB Coder automatically calls out to

R2012b

23-2

https://www.mathworks.com/help/releases/R2012b/coder/ref/parfor.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2012b/coder/ref/coder.screener.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/code-generation-readiness-tool.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/deblank.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/hex2num.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isletter.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isspace.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/isstrprop.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/lower.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/num2hex.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strcmpi.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strjust.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmp.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmpi.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strtok.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/strtrim.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/upper.html

MATLAB for these functions. For standalone code generation, MATLAB Coder does not generate code
for these visualization functions. This capability reduces the amount of time that you spend making
your code suitable for code generation. It also removes the requirement to declare these functions
extrinsic using the coder.extrinsic function.

Input parameter type specification enhancements
The updated project user interface facilitates input parameter type specification.

Project import and export capability
You can now export project settings to a configuration object stored as a variable in the base
workspace. You can then use the configuration object to import the settings into a different project or
to generate code at the command line with the codegen function. This capability allows you to:

• Share settings between the project and command-line workflow
• Share settings between multiple projects
• Standardize on settings for code generation projects

For more information, see Share Build Configuration Settings.

 Check bug reports for issues and fixes

23-3

https://www.mathworks.com/help/releases/R2012b/coder/ug/share-build-configuration-settings.html

Package generated code in zip file for relocation
The packNGo function packages generated code files into a compressed zip file so that you can
relocate, unpack, and rebuild them in another development environment. This capability is useful if
you want to relocate files so that you can recompile them for a specific target environment or rebuild
them in a development environment in which MATLAB is not installed.

For more information, see Package Code For Use in Another Development Environment.

Fixed-point instrumentation and data type proposals
MATLAB Coder projects provide the following fixed-point conversion support:

• Option to generate instrumented MEX functions
• Use of instrumented MEX functions to provide simulation minimum and maximum results
• Fixed-point data type proposals based on simulation minimum and maximum values
• Option to propose fraction lengths or word lengths

You can use these proposed fixed-point data types to create a fixed-point version of your original
MATLAB entry-point function.

Note Requires a Fixed-Point Toolbox™ license.

For more information, see Fixed-Point Conversion.

New toolbox functions supported for code generation
To view implementation details, see Functions Supported for Code Generation — Alphabetical List.

Computer Vision System Toolbox

• integralImage

Image Processing Toolbox

• bwlookup
• bwmorph

Interpolation and Computational Geometry

• interp2

Trigonometric Functions

• atan2d

New System objects supported for code generation
The following System objects are now supported for code generation. To see the list of System objects
supported for code generation, see System Objects Supported for Code Generation.

R2012b

23-4

https://www.mathworks.com/help/releases/R2012b/coder/ug/relocate-code-to-another-development-environment.html
https://www.mathworks.com/help/releases/R2012b/coder/fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
https://www.mathworks.com/help/releases/R2012b/vision/ref/integralimage.html
https://www.mathworks.com/help/releases/R2012b/images/ref/bwlookup.html
https://www.mathworks.com/help/releases/R2012b/images/ref/bwmorph.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2012b/matlab/ref/atan2d.html
https://www.mathworks.com/help/releases/R2012b/coder/ug/system-objects-supported-for-code-generation.html

Communications System Toolbox

• comm.ACPR
• comm.BCHDecoder
• comm.CCDF
• comm.CPMCarrierPhaseSynchronizer
• comm.GoldSequence
• comm.LDPCDecoder
• comm.LDPCEncoder
• comm.LTEMIMOChannel
• comm.MemorylessNonlinearity
• comm.MIMOChannel
• comm.PhaseNoise
• comm.PSKCarrierPhaseSynchronizer
• comm.RSDecoder

DSP System Toolbox

• dsp.AllpoleFilter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.IIRFilter
• dsp.SignalSource

 Check bug reports for issues and fixes

23-5

https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.acprclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.bchdecoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ccdfclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.cpmcarrierphasesynchronizerclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.goldsequenceclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcdecoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcencoderclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ltemimochannelclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.memorylessnonlinearityclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.mimochannelclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.phasenoiseclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.pskcarrierphasesynchronizerclass.html
https://www.mathworks.com/help/releases/R2012b/comm/ref/comm.rsdecoderclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.allpolefilterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicdecimatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.iirfilterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.signalsourceclass.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2012b

23-6

https://www.mathworks.com/support/bugreports/

R2012a

Version: 2.2

New Features

Compatibility Considerations

24

Code Generation for MATLAB Classes
In R2012a, there is preliminary support for code generation for MATLAB classes targeted at
supporting System objects defined by users. For more information about generating code for MATLAB
classes, see Code Generation for MATLAB Classes. For more information about generating code for
System objects, see the DSP System Toolbox, Computer Vision System Toolbox or the
Communications System Toolbox documentation.

Dynamic Memory Allocation Based on Size
By default, dynamic memory allocation is now enabled for variable-size arrays whose size exceeds a
configurable threshold. This behavior allows for finer control over stack memory usage. Also, you can
generate code automatically for more MATLAB algorithms without modifying the original MATLAB
code.

Compatibility Considerations
If you use scripts to generate code and you do not want to use dynamic memory allocation, you must
disable it. For more information, see Controlling Dynamic Memory Allocation.

C/C++ Dynamic Library Generation
You can now use MATLAB Coder to build a dynamically linked library (DLL) from the generated C
code. These libraries are useful for integrating into existing software solutions that expect
dynamically linked libraries.

For more information, see Generating C/C++ Dynamically Linked Libraries from MATLAB Code.

Automatic Definition of Input Parameter Types
MATLAB Coder software can now automatically define input parameter types by inferring these types
from test files that you supply. This capability facilitates input type definition and reduces the risk of
introducing errors when defining types manually.

To learn more about automatically defining types:

• In MATLAB Coder projects, see Autodefining Input Types.
• At the command line, see the coder.getArgTypes function reference page.

Verification of MEX Functions
MATLAB Coder now provides support for test files to verify the operation of generated MEX
functions. This capability enables you to verify that the MEX function is functionally equivalent to
your original MATLAB code and to check for run-time errors.

To learn more about verifying MEX function behavior:

• In MATLAB Coder projects, see How to Verify MEX Functions in a Project.
• At the command line, see the coder.runTest function reference page.

R2012a

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bta5ivr.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bsxyt0_.html#bsyxdsu
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs7tg8w.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8gb3r-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8gag6.html

Enhanced Project Settings Dialog Box
The Project Settings dialog box now groups configuration parameters so that you can easily identify
the parameters associated with code generation objectives such as speed, memory, and code
appearance. The dialog boxes for code generation configuration objects, coder.MexCodeConfig,
coder.CodeConfig, and coder.EmbeddedCodeConfig, also use the same new groupings.

To view the updated Project Settings dialog box:

1 In a project, click the Build tab.
2 On the Build tab, click the More settings link to open the Project Settings dialog box.

For information about the parameters on each tab, click the Help button.

To view the updated dialog boxes for the code generation configuration objects:

1 At the MATLAB command line, create a configuration object. For example, create a configuration
object for MEX code generation.

mex_cfg = coder.config;
2 Open the dialog box for this object.

open mex_cfg

For information about the parameters on each tab, click the Help button.

Projects Infer Input Types from assert Statements in Source Code
MATLAB Coder projects can now infer input data types from assert statements that define the
properties of function inputs in your MATLAB entry-point files. For more information, see Defining
Inputs Programmatically in the MATLAB File.

Code Generation from MATLAB
For details about new toolbox functions and System objects supported for code generation, see the
Code Generation from MATLAB Release Notes.

New Demo
The following demo has been added:

Demo... Shows How You Can...
coderdemo_reverb Generate a MEX function for an algorithm that uses

MATLAB classes.

 Check bug reports for issues and fixes

24-3

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8ba7m-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bs8ba7m-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/eml/rn/braijgx-1_1.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2012a

24-4

https://www.mathworks.com/support/bugreports/

R2011b

Version: 2.1

New Features

25

Support for Deletion of Rows and Columns from Matrices
You can now generate C/C++ code from MATLAB code that deletes rows or columns from matrices.
For example, the following code deletes the second column of matrix X:

X(:,2) = [];

For more information, see Diminishing the Size of a Matrix.

Code Generation from MATLAB
For details of new toolbox functions and System objects supported for code generation, see Code
Generation from MATLAB Release Notes.

R2011b

25-2

https://www.mathworks.com/help/releases/R2012a/techdoc/math/f1-85766.html#f1-85977
https://www.mathworks.com/help/releases/R2012a/toolbox/eml/rn/braijgx-1_1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/eml/rn/braijgx-1_1.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

25-3

https://www.mathworks.com/support/bugreports/

R2011a

Version: 2.0

New Features

Compatibility Considerations

26

New User Interface for Managing Projects
The new MATLAB Coder user interface simplifies the MATLAB to C/C++ code generation process.
Using this user interface, you can:

• Specify the MATLAB files from which you want to generate code
• Specify the data types for the inputs to these MATLAB files
• Select an output type:

• MEX function
• C/C++ Static Library
• C/C++ Executable

• Configure build settings to customize your environment for code generation
• Open the code generation report to view build status, generated code, and compile-time

information for the variables and expressions in your MATLAB code

To Get Started

You launch a MATLAB Coder project by doing one of the following:

• From the MATLAB main menu, select File > New > Code Generation Project
• Enter coder at the MATLAB command line

To learn more about working with MATLAB Coder, see Generating C Code from MATLAB Code Using
the MATLAB Coder Project Interface.

Migrating from Real-Time Workshop emlc Function
In MATLAB Coder, the codegen function replaces emlc with the following differences:

New codegen Options

Old emlc Option New codegen Option
-eg -args
emlcoder.egc coder.Constant
emlcoder.egs coder.typeof(a,b,1) specifies a variable-size input

with the same class and complexity as a and same size
and upper bounds as the size vector b.

Creates coder.Type objects for use with the
codegen -args option. For more information, see
coder.typeof.

-F Nocodegen option available. Instead, use the default
fimath. For more information, see the Fixed-Point
Toolbox documentation.

-global -globals

Note -global continues to work with codegen

R2011a

26-2

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/gs/bsumpq_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/gs/bsumpq_.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.constantclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeof.html

Old emlc Option New codegen Option
-N This option is no longer supported. Instead, set up

numerictype in MATLAB.
-s -config

Use with the new configuration objects, see “New
Code Generation Configuration Objects” on page 26-
3.

-T rtw:exe -config:exe

Use this option to generate a C/C++ executable using
default build options. Otherwise, use -config with a
coder.CodeConfig or
coder.EmbeddedCodeConfig configuration object.

-T mex -config:mex

Use this option to generate a MEX function using
default build options. Otherwise, use -config with a
coder.MexCodeConfig configuration object.

-T rtw
-T rtw:lib

-config:lib

Use either of these options to generate a C/C++
library using default build options. Otherwise, use -
config with a coder.CodeConfig or
coder.EmbeddedCodeConfig configuration object.

New Code Generation Configuration Objects

The codegen function uses new configuration objects that replace the old emlc objects with the
following differences:

Old emlc Configuration Object New codegen Configuration Object
emlcoder.MEXConfig coder.MexCodeConfig
emlcoder.RTWConfig
emlcoder.RTWConfig('grt')

coder.CodeConfig

The SupportNonFinite property is now available without an Embedded
Coder license.

The following property names have changed:

• RTWCompilerOptimization is now CCompilerOptimization
• RTWCustomCompilerOptimization is now

CCustomCompilerOptimization
• RTWVerbose is now Verbose

 Check bug reports for issues and fixes

26-3

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.mexcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.mexcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.codeconfigclass.html

Old emlc Configuration Object New codegen Configuration Object
emlcoder.RTWConfig('ert') coder.EmbeddedCodeConfig

The following property names have changed:

• MultiInstanceERTCode is now MultiInstanceCode
• RTWCompilerOptimization is now CCompilerOptimization
• RTWCustomCompilerOptimization is now

CCustomCompilerOptimization
• RTWVerbose is now Verbose

emlcoder.
HardwareImplementation

coder.HardwareImplementation

The codegen Function Has No Default Primary Function Input Type

In previous releases, if you used the emlc function to generate code for a MATLAB function with
input parameters, and you did not specify the types of these inputs, by default, emlc assumed that
these inputs were real, scalar, doubles. In R2011a, the codegen function does not assume a default
type. You must specify at least the class of each primary function input. For more information, see
Specifying Properties of Primary Function Inputs in a Project.

Compatibility Considerations
If your existing script calls emlc to generate code for a MATLAB function that has inputs and does
not specify the input types, and you migrate this script to use codegen, you must modify the script to
specify inputs.

The codegen Function Processes Compilation Options in a Different Order

In previous releases, the emlc function resolved compilation options from left to right so that the
right-most option prevailed. In R2011a, the codegen function gives precedence to individual
command-line options over options specified using a configuration object. If command-line options
conflict, the right-most option prevails.

Compatibility Considerations
If your existing script calls emlc specifying a configuration object as well as other command-line
options, and you migrate this script to use codegen, codegen might not use the same configuration
parameter values as emlc.

New coder.Type Classes
MATLAB Coder includes the following new classes to specify input parameter definitions:

• coder.ArrayType
• coder.Constant
• coder.EnumType
• coder.FiType

R2011a

26-4

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.embeddedcodeconfigclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.hardwareimplementationclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bswmeu_-4.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.arraytypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.constantclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.enumtypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.fitypeclass.html

• coder.PrimitiveType
• coder.StructType
• coder.Type

New coder Package Functions
The following new package functions let you work with objects and types for C/C++ code generation:

Function Purpose
coder.config Create MATLAB Coder code generation

configuration objects
coder.newtype Create a new coder.Type object
coder.resize Resize a coder.Type object
coder.typeof Convert a MATLAB value into its canonical type

Script to Upgrade MATLAB Code to Use MATLAB Coder Syntax
The coder.upgrade script helps you upgrade to MATLAB Coder by searching your MATLAB code
for old commands and options and replacing them with their new equivalents. For more information,
at the MATLAB command prompt, enter help coder.upgrade.

Embedded MATLAB Now Called Code Generation from MATLAB
MathWorks is no longer using the term Embedded MATLAB to refer to the language subset that
supports code generation from MATLAB algorithms. This nomenclature incorrectly implies that the
generated code is used in embedded systems only. The new term is code generation from MATLAB.
This terminology better reflects the full extent of the capability for translating MATLAB algorithms
into readable, efficient, and compact MEX and C/C++ code for deployment to both desktop and
embedded systems.

MATLAB Coder Uses rtwTargetInfo.m to Register Target Function
Libraries
In previous releases, the emlc function also recognized the customization file,
sl_customization.m. In R2011a, the MATLAB Coder software does not recognize this
customization file, you must use rtwTargetInfo.m to register a Target Function Library (TFL). To
register a TFL, you must have Embedded Coder software. For more information, see Use the
rtwTargetInfo API to Register a CRL with MATLAB Coder Software.

New Getting Started Tutorial Video
To learn how to generate C code from MATLAB code, see the “Generating C Code from MATLAB
Code” video in the MATLAB Coder Getting Started demos.

New Demos
The following demos have been added:

 Check bug reports for issues and fixes

26-5

https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.primitivetypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.structtypeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.newtype.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.resize.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/coder.typeof.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bru6rn3-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bru6rn3-1

Demo... Shows How You Can...
Hello World Generate and run a MEX function from a simple MATLAB

program
Working with Persistent
Variables

Compute the average for a set of values by using persistent
variables

Working with Structure Arrays Shows how to build a scalar template before growing it into
a structure array, a requirement for code generation from
MATLAB.

Balls Simulation Simulates bouncing balls and shows that you should specify
only the entry function when you compile the application
into a MEX function.

General Relativity with MATLAB
Coder

Uses Einstein's theory of general relativity to calculate
geodesics in curved space-time.

Averaging Filter Generate a standalone C library from MATLAB code using
codegen

Edge Detection on Images Generate a standalone C library from MATLAB code that
implements a Sobel filter

Read Text File Generate a standalone C library from MATLAB code that
uses the coder.ceval, coder.extrinsic and
coder.opaque functions.

"Atoms" Simulation Generate a standalone C library and executable from
MATLAB code using a code generation configuration object
to enable dynamic memory allocation

Replacing Math Functions and
Operators

Use target function libraries (TFLs) to replace operators
and functions in the generated code

Note To run this demo, you need Embedded Coder
software.

Kalman Filter • Generate a standalone C library from a MATLAB version
of a Kalman filter

• Accelerate the Kalman filter algorithm by generating a
MEX function

Functionality Being Removed in a Future Version
This function will be removed in a future version of MATLAB Coder software.

Function Name What Happens When You
Use This Function?

Compatibility
Considerations

emlc Still runs in R2011a None

R2011a

26-6

Function Elements Being Removed in a Future Release
Function or Element Name What Happens When You Use

the Function or Element?
Use This Element Instead

%#eml Still runs %#codegen
eml.allowpcode Still runs coder.allowpcode
eml.ceval Still runs coder.ceval
eml.cstructname Still runs coder.cstructname
eml.extrinsic Still runs coder.extrinsic
eml.inline Still runs coder.inline
eml.nullcopy Still runs coder.nullcopy
eml.opaque Still runs coder.opaque
eml.ref Still runs coder.ref
eml.rref Still runs coder.rref
eml.target Still runs coder.target
eml.unroll Still runs coder.unroll
eml.varsize Still runs coder.varsize
eml.wref Still runs coder.wref

 Check bug reports for issues and fixes

26-7

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2011a

26-8

https://www.mathworks.com/support/bugreports/

	R2023a
	MATLAB Programming for Code Generation
	Name-Value Argument Validation: Generate code for arguments blocks in MATLAB functions
	Output Argument Validation: Generate code for arguments(Output) blocks in MATLAB functions
	Input Argument Validation: Use any name for repeating input arguments
	Generate code for growing arrays with (end + 1) indexing
	Generate code for uint32 enumerations
	coder.read and coder.write: Read data from .coderdata file into your deployed application
	Dynamic memory allocation for fixed-size arrays

	Supported Functions
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate C++11 code that passes variables by reference
	Improved quality of code generated for logical indexing operations
	Improved loop fusion for vectorized operations that use variable-size arrays
	Removed redundant operations that use identical values

	Code Generation Workflow
	Generate generic CMakeLists.txt file when you generate source code only
	Improved Error Recovery: Code generation produces fewer unhelpful cascading errors
	Functionality being removed or changed

	Performance
	Generate standalone code that uses built-in FFTW library
	Loop Optimization: Use coder.loop.Control objects to improve for loop performance in generated code
	Generate SIMD instructions in MEX code
	Functionality being removed or changed

	Deep Learning with MATLAB Coder
	Generate code for variable-size dlarray data type
	Generate code for dlnetwork objects that accept variable sequence length inputs
	Generate code for channel-wise convolution layer
	Generate code for Pooling layers with mean padding
	Generate code that takes advantage of learnables compression in bfloat16 format
	Deep learning configuration object name change
	Quantized TensorFlow Lite Models: Configure predict function to accept and return fp32 values
	Use newer version of TensorFlow Lite library in simulation and code generation
	Improved performance of generated generic C/C++ code

	R2022b
	MATLAB Programming for Code Generation
	Input Argument Validation: Generate code for arguments blocks in MATLAB functions
	More MATLAB functions declared as auto-extrinsic

	Supported Functions
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Code Generation Workflow
	Improved representation for string type objects
	Specify code generation target language by using coder.target
	Build generated code with CMake
	Creation of custom CMake toolchain definitions

	Performance
	Improved cache efficiency of generated code containing loop distribution, interchange, and reversal
	Improved performance of generated MEX files
	SIMD code for bitwise and shift operations

	Deep Learning with MATLAB Coder
	Deep Learning: Analyze and find issues in the network for code generation
	TensorFlow Lite: Generate C++ code for pretrained models and deploy on Windows platforms
	Generate code for dlnetwork objects that do not have input layers
	Deep Learning Arrays: Generate code for more functions that use dlarray
	Deep Learning Networks: Generate code for additional networks
	Deep Learning: Generate code for additional layers
	Improved performance of generated generic C/C++ code
	Functionality being removed or changed

	R2022a
	Supported Functions
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate C++11 enumeration classes for MATLAB enumerations
	Improvement to generated C++ code that uses externally specified enumerations
	Additional improvements to generated C++11 code

	Code Generation Workflow
	New Code Generation Readiness Tool: View more information and navigate through readiness results more easily
	coder.ScreenerInfo object: Access code generation readiness information programmatically
	MATLAB Coder Interface for Visual Studio Code Debugging
	Generated MEX: UTF-8 system encoding on Windows platform

	Performance
	SIMD code for reduction operations
	Parallelization of for-loops performing reduction operations
	Minimized variable scope for C99 (ISO) code generation

	Deep Learning with MATLAB Coder
	TensorFlow Lite: Generate C++ code for pretrained models and deploy on Linux platforms
	CMSIS-NN Library: Generate code for quantized deep learning layers and deploy on ARM Cortex-M targets
	Generate generic C/C++ code for dlnetwork workflows
	Code generation from MATLAB for dlnetwork objects that contain image sequences
	Deep Learning Arrays: Generate code for more functions that use dlarray
	Generate C++ code that performs inference computations in 8-bit integers for more layers
	Deep Learning Networks: Generate code for additional networks
	Deep Learning: Generate code for additional layers
	Improved performance of generated generic C/C++ code

	R2021b
	MATLAB Programming for Code Generation
	Implicit Expansion: Generate code for element-wise operations and functions with automatic expansion of operand dimensions
	Generate code for MATLAB code that uses class aliases
	Access name of currently running MATLAB function during debugging by using coder.mfunctionname
	Functionality being removed or changed

	Supported Functions
	Expanded code generation for tables and timetables
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate C++11 enumerations that specify underlying type

	Code Generation Workflow
	Specify custom hardware targets during code generation

	Performance
	SIMD code generation for Intel hardware
	C Code Generation: Generate portable C code that has improved performance for five functions
	Generate optimized code by unrolling parallel for loops
	Eliminated dead code lines containing variable indices
	Improved execution speed through common subexpression elimination
	Generation of vectorized MEX code in JIT compilation mode
	Optimized dynamic array access
	Specify threads to parallelize for and parfor-loops

	Deep Learning with MATLAB Coder
	Deep Learning Workflow: Update network parameters after code generation
	Deep Learning Arrays: Generate code for more functions that use dlarray
	Custom Layers: Use dlarray in deep learning networks that have custom layers
	Code generation from MATLAB for dlnetwork that contains sequences
	Generate generic C/C++ code for more deep learning layers
	Deploy generic C/C++ code on ARM Cortex-M processors
	Generate C++ code that performs inference computations in 8-bit integers for more layers
	Generate C++ code that uses third-party libraries for more deep learning layers
	Functionality being removed or changed

	R2021a
	MATLAB Programming for Code Generation
	Generate code for inherited constructors
	Generate code for name=value syntax for passing name-value arguments
	Generate code for property information functions isprop and properties

	Supported Functions
	Expanded code generation for categorical arrays
	Expanded code generation for tables and timetables
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Multisignature MEX support for multiple entry-point functions
	Catch and handle exceptions for run-time errors that the generated standalone C++ code throws
	C++11 as default language standard for generated C++ code
	Improvement to C++ code generated for enumerations with nonnative size
	Generate UTF-8 encoded C/C++ files that work across locales and platforms
	Bundled CXSparse files in generated code

	Code Generation Workflow
	Improved Representations for Coder Type Objects
	Configuration Parameter Dialog Box: New layout and added functionalities
	Display status of code generation at command line
	Format generated code by using clang-format
	More options to specify multiple entries in code configuration objects
	Functionality being removed or changed
	Target hardware data management
	Support Package for NVIDIA Jetson and NVIDIA DRIVE platforms

	Performance
	Multithreading capabilities for more Image Processing Toolbox functions
	Automatic parallelization of for loops in generated code
	More optimized inlining behavior of public methods of generated C++ classes
	Generated code quality improvements

	Deep Learning with MATLAB Coder
	Generate code for convolutional LSTM networks
	Generate generic C/C++ code for deep learning layers
	Generate code for dlnetwork workflows that use deep learning arrays
	Generate code for convolution layers that performs inference computations in 8-bit integers
	Generate code for more layers
	Generate code that uses newer versions of ARM Compute and Intel MKL-DNN libraries
	Functionality being removed or changed

	R2020b
	MATLAB Programming for Code Generation
	Generate code for MATLAB code that accesses fields of a structure array

	Supported Functions
	Expanded code generation support for eig function
	Expanded code generation for datetime and duration arrays
	Expanded code generation for tables and timetables
	Expanded code generation for categorical arrays
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate MEX function that has C++ classes for MATLAB classes
	Improved organization of generated C++ code into namespaces
	Improved identifier names in generated C++ code
	Improved file partitioning for generated C++ code
	Clearer pattern of ordering of local variable declarations

	Code Generation Workflow
	Reserve C/C++ identifier names by using coder.reservedName
	Access license checkout information by using report information object
	Directly package generated standalone code by using codegen command
	Query capability for target.get function
	Intel C and C++ toolchain support for Windows

	Performance
	Global Settings for Function Inlining: Fine-tune readability and speed of generated code
	JIT support for half-precision floating-point data type

	Deep Learning with MATLAB Coder
	Deep Learning: Generate code for Long Short-Term Memory (LSTM) layer
	Deep Learning: Generate code for custom layers
	Deep Learning: Generate code that uses Intel MKL-DNN library on macOS platform
	Deep Learning: Generate code for additional layers
	Functionality being removed or changed

	R2020a
	MATLAB Programming for Code Generation
	Generate code for half-precision floating-point data type
	Code generation for datetime arrays
	Code generation for timetables

	Supported Functions
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate C++ classes from MATLAB classes
	Use dynamically allocated C++ arrays in generated function interfaces
	Generate code that uses the C++11 standard math library
	Manage memory for threadprivate variables in generated C++ code
	Generate C++ code that complies with MISRA C++:2008 Rule 3-4-1
	Generate one MEX function that supports multiple signatures

	Code Generation Workflow
	Coder Type Editor: Create and edit input types interactively
	Intel C and C++ toolchain support for Windows

	Performance
	Default code generation setting optimizes build to minimize run time
	Improved performance of code generated for fast Fourier transform (FFT) functions
	Improved code quality for functions that allocate handle objects

	Deep Learning with MATLAB Coder
	Deep Learning: Generate code for Long Short-Term Memory (LSTM) layer
	Deep Learning: Generate code for more layers, networks, and classes
	Deep Learning: Generate code that uses newer versions of ARM Compute and Intel MKL-DNN libraries

	R2019b
	MATLAB Programming for Code Generation
	Code generation for tables
	Code generation for duration arrays
	Code generation for hexadecimal and binary literals

	Supported Functions
	Code generation for more MATLAB functions
	Code generation for more toolbox functions

	Generated Code Improvements
	Generate C++ code that has more C++ language and object-oriented features
	Choose the style of generated #include guards
	C strings for null-terminated MATLAB strings
	Improved naming for generated temporary variables

	Code Generation Workflow
	MATLAB Coder features in MATLAB Online
	Automatically call initialize function from entry-point functions in the generated code
	Access code insights and build logs programmatically by using the report information object
	Convert codegen command to equivalent MATLAB Coder project
	Create code configuration object from MATLAB Coder project
	Export of hardware device data
	Data validation for hardware device features
	Upgrade of hardware device definitions

	Performance
	Improved function inlining readability and predictability

	Deep Learning with MATLAB Coder
	Deep Learning: Generate code for more layers and networks

	R2019a
	MATLAB Programming for Code Generation
	Code generation support for class properties with string scalar initial values
	Code generation behavior change for character vector or string scalar input to ismethod
	Code generation for categorical arrays

	Supported Functions
	Code generation for sparse matrix inputs for more functions
	Expanded code generation support for the vecdim input argument
	Code generation for more MATLAB functions
	Code generation for more 5G Toolbox functions
	Code generation for more Audio Toolbox functions
	Code generation for more Automated Driving Toolbox functions
	Code generation for more Communications Toolbox functions
	Code generation for more Computer Vision Toolbox functions
	Code generation for more DSP System Toolbox functions
	Code generation for more Image Processing Toolbox functions
	Code generation for more Phased Array System Toolbox functions
	Code generation for more Robotics System Toolbox functions
	Code generation for more Sensor Fusion and Tracking Toolbox functions
	Code Generation for SerDes Toolbox Functions
	Code generation for more Signal Processing Toolbox functions
	Code generation for more Statistics and Machine Learning Toolbox functions
	Code generation for more Wavelet Toolbox functions
	Code generation for more WLAN Toolbox functions

	Code Generation Workflow
	Access information about code generation programmatically by using the report information object
	Open code generation reports in any MATLAB installation without MATLAB Coder
	Generate parallel for-loops on macOS platform
	Register new hardware devices
	Functionality being removed or changed

	Performance
	Faster C/C++ MEX function generation
	Generated code quality improvements

	Deep Learning with MATLAB Coder
	Deep Learning: Generate code for prediction on ARM processors by using codegen
	Deep Learning: Generate code for more networks and layers

	R2018b
	MATLAB Programming for Code Generation
	Sparse Matrices: Generate code for the backslash operation
	Statistics and Machine Learning Toolbox Code Generation: Update deployed SVM model without regenerating code
	Class Support: Use objects in more functions and data types

	Supported Functions
	Sensor Fusion and Tracking Toolbox Code Generation: Generate code to accelerate and deploy your algorithm
	5G Toolbox Code Generation: Generate code for downlink physical layer
	Fuzzy Logic Toolbox Code Generation: Generate code to load and evaluate Fuzzy Inference Systems
	Code generation for more MATLAB Functions
	Code generation for rng 'shuffle' option
	Code generation for more Audio Toolbox functions
	Code generation for more Automated Driving System Toolbox functions
	Code generation for more Communications Toolbox functions
	Code generation for more Phased Array System Toolbox functions and System objects
	Code generation for more Robotics System Toolbox functions
	Code generation for more Statistics and Machine Learning Toolbox functions
	Code generation for more WLAN Toolbox functions

	Generated Code Improvements
	Standard Math Library: Default to C99 standard math library for C

	Code Generation Workflow
	MATLAB Support Package for Raspberry Pi Hardware: Deploy MATLAB function to Raspberry Pi
	Multiple Entry-Point Functions: Simplify input specification by passing an output as an input
	Changes to Check for Run-Time Issues step in the MATLAB Coder app

	Performance
	Faster Standalone Code for Linear Algebra: Generate code that takes advantage of your own target-specific BLAS library
	Compiler Support: Revert to JIT compilation for MEX code generation when supported compiler not detected
	Nonfinite Support as Needed: Generate files for nonfinite data support only when the generated code uses nonfinite data
	Loop Unrolling Threshold: Optimize code generated for loops

	Deep Learning with MATLAB Coder
	Deep Learning Network Code Generation: Generate C++ code for inference from a trained convolutional neural network

	R2018a
	MATLAB Programming for Code Generation
	Sparse Matrices: Enable more efficient computation by using sparse matrices in generated code
	Delete Method: Call clean-up code automatically when handle classes are deleted in generated code
	Cell Array Support: Import cell arrays into generated code by using coder.load and load

	Supported Functions
	Statistics and Machine Learning Toolbox Code Generation: Generate code for distance calculation on vectors and matrices, and for prediction by using k-nearest neighbor with Kd-tree search and nontree ensemble models
	Code generation for MATLAB sprintf function
	Code generation for MATLAB sort function options
	Code generation for more MATLAB functions
	Code generation for more Audio Toolbox functions
	Code generation for more Communications System Toolbox functions
	Code generation for more Computer Vision System Toolbox functions and objects
	Code generation for more DSP System Toolbox functions
	Code generation for more Phased Array System Toolbox System objects
	Code generation for more Robotics System Toolbox functions
	Code generation for more Signal Processing Toolbox functions
	Code generation for more Wavelet Toolbox functions
	Code generation for more WLAN System Toolbox System objects

	Generated Code Improvements
	N-Dimensional Indexing: Enhance readability by preserving array dimensions in generated code

	Code Generation Workflow
	New Code Generation Report: View more information and navigate through code generation results more easily
	MEX Profiling: See execution times of generated MEX functions in MATLAB Profiler
	Run-Time Error Detection Support for error: Use error with run-time error detection and reporting in standalone code

	Performance
	Row-Major Array Layout: Simplify interfacing generated code with C environments by storing arrays in row-major layout
	More optimizations in generated code

	R2017b
	MATLAB Programming for Code Generation
	Strings: Generate code for MATLAB code that represents text as a string scalar
	Cell Arrays and Classes in Structures: Generate code for structures that contain cell arrays and classes
	Class Folders: Generate code for MATLAB classes defined by using multiple files
	Property Validation: Generate code for classes that restrict property values
	Value Class Inputs: Pass objects of value classes to and from extrinsic functions and as constant inputs to entry-point functions

	Supported Functions
	Statistics and Machine Learning Toolbox Code Generation: Generate C code for prediction by using discriminant analysis, k-nearest neighbor, SVM regression, regression tree ensemble, and Gaussian process regression models
	Code generation for more MATLAB functions
	Code generation for more Audio Toolbox System objects
	Code generation for more Control System Toolbox objects
	Code generation for more DSP System Toolbox System objects
	Code generation for more Phased Array System Toolbox System objects and functions
	Code generation for more Robotics System Toolbox functions
	Code generation for more System Identification Toolbox objects
	Code Generation for more WLAN System Toolbox functions

	Code Generation Workflow
	App Support for Variable Number of Output Arguments: Specify the number of entry-point function output arguments to generate
	Clear MEX in App: Reset the state of the Check for Run-Time Issues step
	I/O Logging for Fixed-Point Conversion in App: Selectively log and plot function inputs and outputs at any level of your design

	Performance
	Fast Fourier Transforms: Generate code that takes advantage of the FFTW library
	memcpy and memset for Variable-Size Arrays and Variable Number of Elements: Optimize code for more copies and assignments
	Global Variables for Constant Values of Aggregate Types: Reduce memory usage in generated code
	Reduction of Duplicate Functions and Types: Generate more compact code

	R2017a
	MATLAB Programming for Code Generation
	Value Classes as Entry-Point Function Arguments: Generate code for more language constructs
	Nested Functions: Generate code for more language constructs
	Handle classes in value classes
	Class properties and structure fields passed by reference to external C functions
	Function specialization prevention with coder.ignoreConst
	Size argument for coder.opaque

	Supported Functions
	Automated Driving System Toolbox Code Generation: Generate code for sensor fusion and tracking workflow
	Code generation for more MATLAB functions
	Code generation for more Audio Toolbox System objects
	Code generation for more Communications System Toolbox System objects
	Code generation for more DSP System Toolbox System objects
	Code generation for more Phased Array System Toolbox functions and System objects
	Code generation for more Robotics System Toolbox functions and classes
	Code generation for more Signal Processing Toolbox functions
	Statistics and Machine Learning Toolbox Code Generation: Generate C code for prediction by using linear models, generalized linear models, decision trees, and ensembles of classification trees
	Code generation for more WLAN System Toolbox functions and System objects

	Generated Code Improvements
	emxArray interface and utility files generated with single-file partitioning
	Additional C and C++ Keywords in List of Reserved Keywords

	Code Generation Workflow
	Potential Differences Reporting: Identify MATLAB code that might behave differently in generated code
	More flexible specification of number of entry-point function arguments
	MEX function generation and testing in one step with codegen -test option
	More fixed-size variable information in Convert to Fixed-Point step of MATLAB Coder app

	Performance
	Loop Invariant Code Motion: Generate optimized code for loops
	Constant folding of value classes
	New coder.unroll syntax for more readable code

	R2016b
	MATLAB Programming for Code Generation
	Recursive Functions and Anonymous Functions: Generate code for more MATLAB language constructs
	Variable-Size Cell Array Support: Use cell to create a variable-size cell array for code generation
	Code generation error for testing equality between enumeration and character array

	Supported Functions
	I/O Support: Generate code for fseek, ftell, fwrite
	Statistics and Machine Learning Toolbox Code Generation: Generate code for prediction by using SVM and logistic regression models
	Communications and DSP Code Generation: Generate code for more functions
	Wavelet Toolbox Code Generation: Generate code for discrete wavelet analysis, synthesis, and denoising functions
	Code generation for additional MATLAB functions
	Code generation for additional Audio Toolbox functions
	Code generation for additional Computer Vision Toolbox functions
	Code generation for additional Robotics System Toolbox functions
	Code generation for extendedKalmanFilter and unscentedKalmanFilter with Control System Toolbox or System Identification Toolbox

	Generated Code Improvements
	Targeted Include Statements for coder.cinclude: Generate include statements only where indicated
	Generated Code Readability: Generate more readable code for control flow

	Code Generation Workflow
	Change to default standard math library for C++
	Simplified type definition in the MATLAB Coder app
	More discoverable build log and errors in MATLAB Coder app
	Improved workflow for collecting and analyzing ranges in MATLAB Coder app
	More discoverable logs and reports for fixed-point conversion in MATLAB Coder app
	Hierarchical packaging of generated code in MATLAB Coder app

	Performance
	JIT MEX Compilation: Use JIT compilation to reduce code generation times for MEX
	Change in default value for preserve variable names option

	R2016a
	MATLAB Programming for Code Generation
	Cell Array Support: Use additional cell array features in MATLAB code for code generation
	Concatenation of Variable-Size Empty Arrays: Generate code for concatenation when a component array is empty

	Supported Functions
	Non-Power-of-Two FFT Support: Generate code for fast Fourier transforms for non-power-of-two transform lengths
	Computer Vision System Toolbox and Image Processing Toolbox Code Generation: Generate code for additional functions
	xcorr Code Generation: Generate faster code for xcorr with long input vectors
	Code generation for additional MATLAB functions
	Changes to code generation support for MATLAB functions
	Code generation for Audio Toolbox functions and System objects
	Code generation for additional Communications System Toolbox functions
	Code generation for additional DSP System Toolbox
	Code generation for additional Phased Array System Toolbox functions
	Code generation for additional Robotics System Toolbox functions
	Code generation for WLAN System Toolbox functions and System objects

	Code Generation Workflow
	MATLAB Coder Student Access: Obtain MATLAB Coder as student-use, add-on product or with MATLAB Primary and Secondary School Suite
	MATLAB Coder App Line Execution Count: See how well test exercises MATLAB code
	MATLAB Coder App Undo and Redo: Easily revert changes to type definitions
	MATLAB Coder App Error Table: View complete error message
	Changes to Fixed-Point Conversion Code Coverage
	More Keyboard Shortcuts in Code Generation Report: Navigate the report more easily

	Performance
	Faster Standalone Code for Linear Algebra: Generate code that takes advantage of your own target-specific LAPACK library
	memset Optimization for More Cases: Optimize code that assigns a constant value to consecutive array elements
	Optimization for Conditional and Boolean Expressions: Generate efficient code for more cases

	R2015aSP1
	R2015b
	Cell Array Support: Generate C code from MATLAB code that uses cell arrays
	Faster MEX Functions for Linear Algebra: Generate MEX functions that take advantage of LAPACK
	Double-Precision to Single-Precision Conversion: Convert double-precision MATLAB code to single-precision C code
	Run-Time Checks in Standalone C Code: Detect and report run-time errors while testing generated standalone libraries and executables
	Multicore Capable Functions: Generate OpenMP-enabled C code from more than twenty MATLAB mathematics functions
	Image Processing Toolbox and Computer Vision System Toolbox Code Generation: Generate code for additional functions in these toolboxes
	Image Processing Toolbox
	Computer Vision System Toolbox

	Statistics and Machine Learning Toolbox Code Generation: Generate code for kmeans and randsample
	Simplified hardware specification in the MATLAB Coder app
	MATLAB Coder app user interface improvements
	Improvements for manual type definition
	Tab completion for specifying files
	Compatibility between the app colors and MATLAB preferences
	Progress indicators for the Check for Run-Time Issues step

	Saving and restoring of workflow state between MATLAB Coder app sessions
	Project reuse between MATLAB Coder and HDL Coder
	Code generation using freely available MinGW-w64 compiler
	codegen debug option for libraries and executables
	Code generation for additional MATLAB functions
	Data Types in MATLAB
	String Functions in MATLAB

	Code generation for additional Communications System Toolbox, DSP System Toolbox, and Phased Array System Toolbox System objects
	Communications System Toolbox
	DSP System Toolbox
	Phased Array System Toolbox

	Code generation for Robotics System Toolbox functions and System objects
	Code generation for System Identification Toolbox functions and System objects
	Fixed-Point Conversion Enhancements
	Saving and restoring fixed-point conversion workflow state in the app
	Reuse of MEX files during fixed-point conversion using the app
	Specification of additional fimath properties in app editor
	Improved management of comparison plots
	Variable specializations
	Detection of multiword operations

	R2015a
	Improved MATLAB Coder app with integrated editor and simplified workflow
	Generation of example C/C++ main for integration of generated code into an application
	Better preservation of MATLAB variable names in generated code
	More efficient generated code for logical indexing
	Code generation for additional Computer Vision System Toolbox and Computer Vision System Toolbox functions
	Image Processing Toolbox
	Computer Vision System Toolbox

	Code generation for additional Communications System Toolbox, DSP System Toolbox, and Phased Array System Toolbox System objects
	Communications System Toolbox
	DSP System Toolbox
	Phased Array System Toolbox

	Code generation for additional Statistics and Machine Learning Toolbox functions
	Code generation for additional MATLAB functions
	Linear Algebra
	Statistics in MATLAB

	Code generation for additional MATLAB function options
	Conversion from project to MATLAB script using MATLAB Coder app
	Improved recognition of compile-time constants
	Improved emxArray interface function generation
	emxArray interface functions for variable-size arrays that external C/C++ functions use
	Functions to initialize output emxArrays and emxArrays in structure outputs
	External definition of a structure that contains emxArrays

	Code generation for casts to and from types of variables declared using coder.opaque
	Generation of reentrant code without an Embedded Coder license
	Code generation for parfor-loops with stack overflow
	Change in default value of the PassStructByReference code configuration object property
	Change in GLOBALS variable in scripts generated from a project
	Target build log display for command-line code generation when hyperlinks disabled
	Removal of instrumented MEX output type
	Truncation of long enumerated type value names that include the class name prefix
	Fixed-point conversion enhancements
	Support for multiple entry-point functions
	Support for global variables
	Code coverage-based translation
	Generated fixed-point code enhancements
	Automated fixed-point conversion of additional DSP System Toolbox objects
	New interpolation method for generating lookup table MATLAB function replacements

	R2014b
	Code generation for additional Image Processing Toolbox and Computer Vision System Toolbox functions
	Image Processing Toolbox
	Computer Vision System Toolbox

	Code generation for additional Communications System Toolbox and DSP System Toolbox functions and System objects
	Communications System Toolbox
	DSP System Toolbox

	Code generation for enumerated types based on built-in MATLAB integer types
	Code generation for function handles in structures
	Change in enumerated type value names in generated code
	Code generation for ode23 and ode45 ordinary differential equation solvers
	Code generation for additional MATLAB functions
	Data and File Management in MATLAB
	Linear Algebra in MATLAB
	String Functions in MATLAB

	Code generation for additional MATLAB function options
	Collapsed list for inherited properties in code generation report
	Change in length of exported identifiers
	Intel Performance Primitives (IPP) platform-specific code replacement libraries for cross-platform code generation
	Fixed-point conversion enhancements
	Conversion from project to MATLAB scripts for command-line fixed-point conversion and code generation
	Lookup table approximations for unsupported functions
	Enhanced plotting capabilities
	Automated fixed-point conversion for commonly used System objects in MATLAB including Biquad Filter, FIR Filter, and Rate converter
	Additional fixed-point conversion command-line options
	Type proposal report
	Generated fixed-point code enhancements
	Highlighting of potential data type issues in generated HTML report

	R2014a
	Code generation for additional Image Processing Toolbox and Computer Vision System Toolbox functions
	Image Processing Toolbox
	Computer Vision System Toolbox

	Code generation for additional Signal Processing Toolbox, Communications System Toolbox, and DSP System Toolbox functions and System objects
	Signal Processing Toolbox
	Communications System Toolbox
	DSP System Toolbox

	Code generation for fminsearch optimization function and additional interpolation functions in MATLAB
	Optimization Functions in MATLAB
	Interpolation and Computational Geometry in MATLAB

	Conversion from project to MATLAB script for command-line code generation
	Code generation for fread function
	Automatic C/C++ compiler setup
	Compile-time declaration of constant global variables
	Enhanced code generation support for switch statements
	Code generation support for value classes with set.prop methods
	Code generation error for property that uses AbortSet attribute
	Independent configuration selections for standard math and code replacement libraries
	Restrictions on bit length for integer types in a coder.HardwareImplementation object
	Change in location of interface files in code generation report
	Compiler warnings in code generation report
	Removal of date and time comment from generated code files
	Removal of two's complement guard from rtwtypes.h
	Removal of TRUE and FALSE from rtwtypes.h
	Change to default names for structure types generated from entry-point function inputs and outputs
	Toolbox functions supported for code generation
	Fixed-point conversion enhancements
	Overflow detection with scaled double data types in MATLAB Coder projects
	Support for MATLAB classes
	Generated fixed-point code enhancements
	Fixed-point report for float-to-fixed conversion

	R2013b
	Code generation for Statistics Toolbox and Phased Array System Toolbox
	Toolbox functions supported for code generation
	parfor function for standalone code generation, enabling execution on multiple cores
	Persistent variables in parfor-loops
	Random number generator functions in parfor-loops
	External code integration using coder.ExternalDependency
	Updating build information using coder.updateBuildInfo
	Generation of simplified code using built-in C types
	Conversion of MATLAB expressions into C constants using coder.const
	Highlighting of constant function arguments in the compilation report
	Code Generation Support for int64, uint64 data types
	C99 long long integer data type for code generation
	Change to passing structures by reference
	coder.runTest new syntax
	coder.target syntax change
	Changes for complex values with imaginary part equal to zero
	Subfolder for code generation interface files
	Support for LCC compiler on Windows 64-bit machines
	Fixed-Point conversion enhancements

	R2013a
	Automatic fixed-point conversion during code generation (with Fixed-Point Designer)
	File I/O function support
	Support for nonpersistent handle objects
	Structures passed by reference to entry-point functions
	Include custom C header files from MATLAB code
	Load from MAT-files
	coder.opaque function enhancements
	Automatic regeneration of MEX functions in projects
	MEX function signatures include constant inputs
	Custom toolchain registration
	Complex trigonometric functions
	parfor function reduction improvements and C support
	Support for integers in number theory functions
	Enhanced support for class property initial values
	Optimized generated code for x=[x c] when x is a vector
	Default use of Basic Linear Algebra Subprograms (BLAS) libraries
	Changes to compiler support
	New toolbox functions supported for code generation
	Functions being removed

	R2012b
	parfor function support for MEX code generation, enabling execution on multiple cores
	Code generation readiness tool
	Reduced data copies and lightweight run-time checks for generated MEX functions
	Additional string function support for code generation
	Visualization functions in generated MEX functions
	Input parameter type specification enhancements
	Project import and export capability
	Package generated code in zip file for relocation
	Fixed-point instrumentation and data type proposals
	New toolbox functions supported for code generation
	New System objects supported for code generation

	R2012a
	Code Generation for MATLAB Classes
	Dynamic Memory Allocation Based on Size
	C/C++ Dynamic Library Generation
	Automatic Definition of Input Parameter Types
	Verification of MEX Functions
	Enhanced Project Settings Dialog Box
	Projects Infer Input Types from assert Statements in Source Code
	Code Generation from MATLAB
	New Demo

	R2011b
	Support for Deletion of Rows and Columns from Matrices
	Code Generation from MATLAB

	R2011a
	New User Interface for Managing Projects
	To Get Started

	Migrating from Real-Time Workshop emlc Function
	New codegen Options
	New Code Generation Configuration Objects
	The codegen Function Has No Default Primary Function Input Type
	The codegen Function Processes Compilation Options in a Different Order

	New coder.Type Classes
	New coder Package Functions
	Script to Upgrade MATLAB Code to Use MATLAB Coder Syntax
	Embedded MATLAB Now Called Code Generation from MATLAB
	MATLAB Coder Uses rtwTargetInfo.m to Register Target Function Libraries
	New Getting Started Tutorial Video
	New Demos
	Functionality Being Removed in a Future Version
	Function Elements Being Removed in a Future Release

